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Abstract. Task mapping in modern high performance parallel

computers can be modeled as a graph embedding problem, which

simulates the mapping as embedding one graph into another and

try to find the minimum wirelength for the mapping. Though em-

bedding problems have been considered for several regular graphs,

such as hypercubes into grids, binary trees into grids, et al, it is

still an open problem for hypercubes into cylinders. In this paper,

we consider the problem of embedding hypercubes into cylinders to

minimize the wirelength. We obtain the exact wirelength formula

of embedding hypercube Qr into cylinder C23 × P2r−3 with r ≥ 3.

Graph embedding and Hypercube and Cylinder and Parallel

computing

1. Introduction

On one hand, a parallel program can be modeled as a task graph,

in which the vertices of the graph represent a computing task, and

the edges represent the communications among different tasks. On the

other hand, a massive parallel computer has a large number of process-

ing nodes that are connected together with an interconnection network.

One of the key problems of efficient execution of parallel programs on

these computers is how to find an optimal mapping from computing

tasks to processing nodes, so that the communication overhead could

be reduced when the tasks are run in parallel. Without loss of general-

ity, this problem can also be modeled as an graph embedding problem,

since task mapping is actually try to find an optimal embedding of

computing task graph into the interconnection graph (network) with

minimum link congestion. Unfortunately, task mapping is proved as a

NP hard problem and heuristics algorithms are usually used to find an

approximate solution for a given application and interconnection.
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Researchers have been working on graph embedding for years and

proposed a number of solution for regular graphs, such as hypercubes

into grids [7], binary trees into grids [8], honeycomb into hypercubes [9],

grids into grids [10]. This paper introduce a new technique to estimate

the wirelength of embedding hypercube Qr into cylinder C23 × P2r−3

with r ≥ 3.

The rest of the paper is organized as follows. We show the existing

work on graph embedding in Section 2. Section 3 introduces the gray

embedding and some useful property, which is used afterwards in the

wirelength calculation. Section 4 discusses some composite sets with

Cartesian production structure. The wirelength calculation of hyper-

cube into cylinder is given in section 5. Conclusion and future work

appear in Section 6.

2. Problem definition

Let G and H be finite graphs with n vertices. V (G) and V (H) denote

the vertex sets of G and H respectively. E(G) and E(H) denote the

edge sets of G and H respectively. An embedding [4] f of G into H is

defined as follows:

(i) f is a bijective map from V (G) to V (H);

(ii) f is a one-to-one map from E(G) to {Pathf (u, v) : Pathf (u, v)

is a path in H between f(u) and f(v)}.
The edge congestion of an embedding f of G into H is the maximum

number of edges of the graph G that are embedded on any single edge

of H. Let ECf (e) denote the number of edges (u, v) of G such that e

is in the path Pathf (u, v) between f(u) and f(v) in H, in other words,

ECf (e) = |{(u, v) ∈ E(G) : e ∈ Pf (u, v)}|.

For any S ⊂ E(H), define

ECf (S) =
∑
e∈S

ECf (e).

The edge congestion of an embedding f of G into H is given by

ECf (G,H) = max
e∈E(H)

ECf (e).
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The minimum edge congestion of G into H

EC(G,H) = min
f :G→H

ECf (G,H),

where the minimum is taken over all embeddings f of G into H.

The edge congestion problem of G into H is to find an embedding

of G into H that induces minimum edge congestion EC(G,H).

The wirelength of an embedding f of G into H is given by

WLf (G,H) =
∑

(u,v)∈E(G)

dH(f(u), f(v)) =
∑

e∈E(H)

ECf (e).

where dH(f(u), f(v)) denote the length of the path Pathf (u, v) in H.

The wirelength of G into H is defined as

WL(G,H) = min
f :G→H

WLf (G,H),

where the minimum is taken over all embeddings f of G into H.

The wirelength problem of G into H is to find an embedding of G

into H that induces minimum wirelength WL(G,H).

Manuel et al([6]) find that the maximal subgraph problem play an

important role in solving wirelength problem. For a graph G and an

integer m,

IG(m) = max
A⊂V (G), |A|=m

|IG(A)|,

where

IG(A) = {(u, v) ∈ E(G) : u, v ∈ V (G)}.
A subset A ⊂ V (G) is called optimal if |IG(A)| = IG(|A|)|.

The following lemmas are proved in [7]. Note that a set of edges of

H is said to be an edge cut of H, if the removal of these edges results

in a disconnection of H.

Lemma 2.1 (Congestion Lemma). Let G be an r-regular graph and

f be an embedding of G into H. Let S be an edge cut of H such that

the removal of edges of S leaves H into 2 components H1,H2 and let

G1 = f−1(H1), G2 = f−1(H2). Also S satisfy the following condition,

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pathf (a, b) has no edges in

S.

(ii) For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pathf (a, b)

has exactly one edge in S.
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(iii) G1 is optimal.

Then ECf (S) is minimum and ECf (S) = r|V (G1)| − 2|E(G1)|.

Lemma 2.2 (Partition Lemma). Let f : G→ H be an embedding. Let

{S1, S2, · · · , Sp} be a partition of E(H) such that each Si is an edge

cut of H. Then

WLf (G,H) =

p∑
i=1

WLf (Si).

We will discuss the embedding of following graphs.

Qr, the graph of the r-dimensional hypercube, has vertex-set {0, 1}r,
the r-fold Cartesian product of {0, 1}. Thus |V (Qr)| = 2r. Qr has an

edge between two vertices (r-tuple of 0s and 1s) if they differ in exactly

one entry.

The 1-dimensional grid with d ≥ 2 vertices is denoted as Pd. The

1-dimensional cycle with d ≥ 2 vertices is denoted as Cd. The 2-

dimensional grid is defined as Pd1 ×Pd2 , where di ≥ 2 is an integer for

each i = 1, 2. The cylinder Cd1 × Pd2 , where d1 ≥ 2 and d2 ≥ 1, is a

Pd1×Pd2 grid with a wraparound edge in each column (see e.g., Figure

2). The torus Cd1 × Cd2 , where d1, d2 ≥ 2, is a Pd1 × Pd2 grid with a

wraparound edge in each column and a wrapround edge in each row.

It is conjectured that the wirelength of embedding hypercube Qr into

cycle C2r is 3 · 22r−3 − 2r−1. It is called CT conjecture [4, 2, 3, 7]. It is

also conjectured in [6] such that the wirelength of embedding hypercube

Qr into cylinder C2r1 × P2r2 with positive integers r1 + r2 = r is

2r1(22r2−1 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1),

and the wirelength of embedding hypercube Qr into torus C2r1 × C2r2

with positive integers r1 + r2 = r is

2r1(3× 22r2−3 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1).

Manuel et al ([6]) verified the case of embedding Qr into cylinder

C22 × P2r−2 for r ≥ 2. We prove in this paper that

Theorem 2.3. For any r ≥ 3, the wirelength of embedding Qr into

cylinder C23 × P2r−3 is

2r1(22r2−1 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1),
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where r1 = 3 and r2 = r − 3.

Remark 1. Our argument for Theorem 2.3 also valid for embedding

of hypercube Q6 into torus C8 × C8. So

WL(Q6, C8 × C8) = 2× 8× 20 = 320.

3. Gray Embedding

Grid embedding plays an important role in computer architecture,

and researchers believe that gray embedding minimize wirelength of

emdedding hypercube into cycles, cylinders and torus [2, 6].

To construct gray embedding, we give first the bijection of V (Qr) to

V (P2r1 × P2r2 ).

Given d > 0 and under Gray code list of d bits, every code corre-

sponding to a number, e.g.,

gd(0
d) = 0, gd(0

d−11) = 1, gd(0
d−211) = 2, · · · , gd(10r−1) = 2d − 1.

Define an embedding gray from Qr into C2r1 × P2r2 with r1, r2 ≥ 2

and r1 + r2 = r. The vertices of C2r1 × P2r2 have coordinates of the

form (i, j), for i = 0, 1, · · · , 2r1 − 1, j = 0, 1, · · · , 2r2 − 1. Every vertex

of Qr correspond to a string in {0, 1}r. Take any w ∈ {0, 1}r, write

w = uv, where u ∈ {0, 1}r1 , v ∈ {0, 1}r2 , define

gray(w) = (gr1(u), gr2(v)),

which corresponding to a unique vertex in V (P2r1 × P2r2 ).

As an example, we illustrate the embedding from V (Q4) to V (P4 ×
P4). By the above construction

g2(00) = 0, g2(01) = 1, g2(11) = 2, g2(10) = 3.

So we can directly get the map gray as shown in Figure 1.

Lemma 3.1. Fix r ≥ 2 and r1, r2 ≥ 1 with r1 + r2 = r. Define a

bijection gray from V (Qr) to V (P2r1 × P2r2 ) as above. For any edge

(x, y) in hypercube Qr, gray(x) and gray(y) are in the same row or the

same column of P2r1 × P2r2 .
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Figure 1. The bijective map gray : V (Q4)→ V (P4 × P4)

Proof. Without loose of generality, let x, y ∈ {0, 1}r. Write x = u1v1,

y = u2v2, with |u1| = |u2| = r1 and |v1| = |v2| = r2. Since x and y

are different only in one bit, either u1 = u2 or v1 = v2. Hence either

the x-coordinate or the y-coordinate of gray(x) and gray(y) are equal.

The result of the lemma follows. � �

Let G = Qr and H = C2r1 × P2r2 (respectively H = C2r1 × C2r2 ).

Now we can construct graph embedding from G to H. We have already

define a vertices bijection gray from G to H. For any edge (x, y) in G,

define Pathgray(x, y) be the path in H between gray(x) and gray(y)

with minimal number of edges.

4. Structure of a class of composite sets

In our paper we will discuss some composite sets with Cartesian

product structure.

A c-subcube of the r-cube is the subgraph of Qr induced by the set

of all vertices having the same value in some r − c coordinates.

For any 0 < k < 2r, write

k =
m∑
i=1

2ci , 0 ≤ c1 < c2 < · · · < cm.

If S is a subgraph of Qr which is a disjoint union of ci-subcubes, 1 ≤
i ≤ m, such that each cj-subcube lies in a neighborhood of every ci-

subcube for any j > i, then S is called a composite set (or cubal, see

[1, 5]).
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Let S be a subgraph of Qr with |V (S)| = k > 0. It is proved in [5]

that S is a composite set if and only if it is optimal, or equivalently,

IQr(S) = IQr(k).

For any graph S and T , recall that the Cartesian product S × T of

S, T is, V (S × T ) = V (S) × V (T ), and ((u1, u2), (v1, v2)) ∈ E(S × T )

if and only if

(u1, v1) ∈ E(S), u2 = v2 ∈ V (T ) or u1 = v1 ∈ V (S), (u2, v2) ∈ E(T ).

Take any r = r1 + r2 with r1, r2 ≥ 1. By definition of Cartesian

product of graphs, it is direct to know that Qr = Qr1 × Qr2 . If S is a

d1-subcube of Qr1 , T is a d2-subcube of Qr2 , then S × T is a (d1 + d2)-

subcube of Qr. Hence by definition of composite set, we see that if

S is a subcube of Qr1 , T is a composite set of Qr2 , then S × T is a

composite set of Qr. So we get the following lemma

Lemma 4.1. Let S and T are composite sets of Qr1 and Qr2 respec-

tively. Suppose further that at least one of S and T is a subcube, then

S × T is a composite set of Qr1 ×Qr2.

Recall that the (binary-reflected) Gray code list for d bits can be

generated recursively from the list for d − 1 bits by reflecting the list

(i.e. listing the entries in reverse order), concatenating the original

list with the reversed list, prefixing the entries in the original list with

a binary 0, and then prefixing the entries in the reflected list with a

binary 1.

By this kind of recursive structure, we see that if 0 ≤ k < 2d, then

g−1d (0 : k) is a composite set, where we use the matlab notation m : n

for any 0 ≤ m ≤ n to indicate the set {m,m+ 1, · · · , n} of consecutive

integers.

In fact, write

k =
m∑
i=1

2ci , 0 ≤ c1 < c2 < · · · < cm.

Let am+1 = 0, and for 1 ≤ i ≤ m,

ai =
m∑
k=i

2ck .
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Then for any 1 ≤ i ≤ m, g−1d (ai+1 : ai−1) is a ci-subcube in Qd. These

subcubes are disjoint, and each cj-subcube lies in a neighborhood of

every ci-subcube for any j > i. So we get the following lemma

Lemma 4.2. For any d > 0 and 0 ≤ j < 2d, g−1d (0 : j) is a composite

set of hypercube Qd.

5. Hypercube into Cylinder

Now we can prove Theorem 2.3 by computing WL(G,H) for G = Qr,

H = C8 × P2r−3 . Denote r1 = 3 and r2 = r − 3.

To apply Congestion Lemma, we need to construct suitable edge cuts

to form a partition. For j = 1, 2, · · · , 2r2 − 1, define edge cut

Bj = {((i, j − 1), (i, j)) : i = 0, 1, · · · , 7}.

Define edge cuts

A1 = {((0, j), (1, j)), ((3, j), (4, j)) : j = 0, 1, · · · , 2r2 − 1}
A2 = {((1, j), (2, j)), ((6, j), (7, j)) : j = 0, 1, · · · , 2r2 − 1}
A3 = {((2, j), (3, j)), ((5, j), (6, j)) : j = 0, 1, · · · , 2r2 − 1}
A4 = {((4, j), (5, j)), ((7, j), (0, j)) : j = 0, 1, · · · , 2r2 − 1}

For any 1 ≤ i ≤ 4, Ai disconnects H into two components Xi and

X ′i. For any 0 ≤ j < 2r2 − 1, Bj disconnects H into two components

Yj and Y ′j . We illustrate the case r = 6, r1 = r2 = 3 in Figure 2.

Figure 2. The edge cut A1 and Bj in H = C23 × P2r−3

We discuss first A1.
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Let G1 and G′1 be the inverse images of X1 and X ′1 under gray

respectively. By Lemma 3.1, the edge cut A1 satisfies condition (ii) of

the Congestion Lemma.

Now we show that A1 satisfies condition (i). Since for any edge

(u, v) ∈ G, Pathgray(u, v) is the shortest path connecting gray(u) and

gray(v), we only need to check whether there is a path from (0, j)

to (4, j) for any j = 0, 1, · · · , 2r−3 − 1. Notice that, if the Hamming

distance of two codes is odd, then the gray coding distance is odd, and

vice versa. This implies that the Hamming distance between g−13 (0)

and g−13 (4) is even. So there are no edge path connecting (0, j) and

(4, j).

Notice that V (X1) = {1, 2, 3}×{0, 1, · · · , 2r2−1} for some k. It is di-

rect to see that g−13 ({1, 2, 3}) is a composite set, and g−1r2
{0, 1, · · · , 2r2−

1} is a r2-subcube. This implies that the subgraph G1 is Cartesian

product of a composite set and a subcube. By Lemma 4.1, G1 is a

composite set, and hence optimal. Thus by the Congestion Lemma,

ECgray(A1) is minimum.

The argument for A2, A3 and A4 are analogous. For A2, we see

that g−13 ({2, 3, 4, 5, 6}) is a composite set, and there are no edge path

connecting (2, j) and (6, j). For A3, we see that g−13 ({3, 4, 5}) is a

composite set, and there are no edge path connecting (2, j) and (6, j).

For A4, we see that g−13 ({5, 6, 7}) is a composite set, and there are no

edge path connecting (0, j) and (4, j). Thus by the Congestion Lemma,

ECgray(A2), ECgray(A3) and ECgray(A4) are also minimum.

Fix any 1 ≤ j ≤ 2r2 − 1. Let Gj and G′j be the inverse images of Yj

and Y ′j under gray respectively. The edge cut Bj satisfies conditions (i)

and (ii) of the Congestion Lemma. Note that V (Yj) = {0, 1, · · · , 7} ×
{0, 1, · · · , j− 1}. It is direct to see that g−13 (0 : 7) is a 3-subcube. And

by Lemma 4.2, g−1r2
(0 : j) is a composite set. This implies that Gj is

Cartesian product of a sub-hypercube of order 3 with a composite set.

By Lemma 4.1, Gj is also a composite set, and hence is optimal. Thus

by the Congestion Lemma, ECgray(Bj) is minimum.

The Partition lemma implies that WLgray(G,H) is minimum.
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It is direct to compute that for any r ≥ 3

WLgray(Q
r, C23 × P2r−3) = 2r1(22r2−1 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1),

where r1 = 3 and r2 = r − 3.

This proves Theorem 2.3.

6. Conclusion

Manuel et al get the exact wirelength of embedding of hypercube Qr

into cylinder C22 × P2r−3 with r ≥ 2. We prove in this paper that gray

embedding minimizes the wirelength of embedding hypercube Qr into

cylinder C23 × P2r−3 with r ≥ 3, and hence get the exact wirelength of

this case. We also get the exact wirelength of embedding hypercube

Q6 into torus C23 × C23 .

We ever apply this method to study the case of embedding hyper-

cube Qr into cylinder C24 × P2r−4 for any r ≥ 4. We tried many

embeddings(including gray embedding), but we can’t get a partition

to apply Congestion Lemma.

Acknowledgements Liu and Wang are supported by the National

Natural Science Foundation of China, No. 11371055. Ji is supported

by the National Natural Science Foundation of China, No. 61300010.

References

[1] A.J. Boals, A.K. Gupta, N.A. Sherwani, Incomplete hypercubes: Algorithms

and embeddings, The Journal of Supercomputing, 8, 263-294(1994).

[2] J.D. Chavez, R. Trapp, The cyclic cutwidth of trees, Discrete Applied Mathe-

matics, 87, 25-32(1998).

[3] J. Erbele, J.D. Chavez, R. Trapp, The Cyclic Cutwidth of Qn, Manuscript,

California State University, San Bernardino USA, 2003.

[4] C.-J. Guu, The circular wirelength problem for hypercubes, PhD dissertation,

University of California, Riverside, 1997.

[5] L.H. Harper, Global Methods for Combinatorial Isoperimetric Problems, Cam-

bridge University Press, 2004.

[6] P. Manuel, M. Arockiaraj, I. Rajasingh and B. Rajan, Embedding hypercubes

into cylinders, snakes and caterpillars for minimizing wirelength, Discrete Applied

Mathematics, 159(17), 2109-2116(2011).

[7] P. Manuel, I. Rajasingh, B. Rajan and H. Mercy, Exact wirelength of hypercube

on a grid, Discrete Applied Mathematics, 157(7), 1486-1495(2009).



EMBEDDING OF HYPERCUBE INTO CYLINDER 11

[8] J. Opatrny, D. Sotteau, Embeddings of complete binary trees into grids and

extended grids with total vertex-congestion 1, Discrete Applied Mathematics 98,

237-254(2000).

[9] B. Doina, W.B. Wolfgang, B. Natasa, L. Shahram, An optimal embedding

of honeycomb networks into hypercubes, Parallel Processing Letters, 14, 367-

375(2004).

[10] M. Rottger, U.P. Schroeder, Efficient embeddings of grids into grids, Discrete

Applied Mathematics, 108 (1-2) 143-173(2001).

Dept. Computer Science, Beijing Institute of Technology, Beijing

100081, PR China. qhliu@bit.edu.cn, jwx@bit.edu.cn, gzwang@bit.edu.cn,

chaosdefinition@hotmail.com.


	1. Introduction
	2. Problem definition
	3. Gray Embedding
	4. Structure of a class of composite sets
	5. Hypercube into Cylinder
	6. Conclusion
	References

