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Abstract
With the increasing popularity of AArch64 processors in

general-purpose computing, securing software running on

AArch64 systems against control-flow hijacking attacks has

become a critical part toward secure computation. Shadow

stacks keep shadow copies of function return addresses and,

when protected from illegal modifications and coupled with

forward-edge control-flow integrity, form an effective and

proven defense against such attacks. However, AArch64

lacks native support for write-protected shadow stacks, while

software alternatives either incur prohibitive performance

overhead or provide weak security guarantees.

We present InversOS, the first hardware-assisted write-

protected shadow stacks for AArch64 user-space applica-

tions, utilizing commonly available features of AArch64 to

achieve efficient intra-address space isolation (called Privi-
lege Inversion) required to protect shadow stacks. Privilege

Inversion adopts unconventional design choices that run

protected applications in the kernel mode and mark operat-

ing system (OS) kernel memory as user-accessible; InversOS

therefore uses a novel combination of OS kernel modifica-

tions, compiler transformations, and another AArch64 fea-

ture to ensure the safety of doing so and to support legacy

applications. We show that InversOS is secure by design,

effective against various control-flow hijacking attacks, and

performant on selected benchmarks and applications (incur-

ring overhead of 7.0% on LMBench, 7.1% on SPEC CPU 2017,

and 3.0% on Nginx web server).

CCS Concepts: • Security and privacy → Systems secu-
rity; Software and application security.

Keywords: hardware-assisted protected shadow stacks, intra-

address space isolation, AArch64, control-flow integrity

1 Introduction
AArch64 (64-bit ARM) processors are becoming increasingly

popular, not only in embedded and mobile platforms but also

in personal computers [7] and high-performance servers

and data centers [5, 52, 92, 102]. Given the popularity of

AArch64 processors used in production and in our daily lives,

securing software on such systems is critical. In particular,

a large portion of AArch64 application code is written in

memory-unsafe programming languages (e.g., C and C++)

and is vulnerable to control-flow hijacking attacks [111, 126]

that exploit memory safety errors. While basic code injection

attacks are prevented by the wide deployment of the W⊕X
policy [105], which disallows memory to be writable and

executable at the same time, advanced code-reuse attacks like

return-oriented programming (ROP) [111, 116] and jump-

oriented programming (JOP) [13] are still possible. These

attacks hijack a program’s control flow by corrupting code

pointers (e.g., return addresses and function pointers) to

point to reusable code of the attacker’s choosing. Worse yet,

recent research [28] has demonstrated automation of ROP

attacks on AArch64, necessitating effective and practical

defenses to be deployed.

Control-flow integrity (CFI) [1, 2], a seminal mitigation

to control-flow hijacking attacks, restricts a program’s con-

trol flow to follow its intended control-flow graph. While

ineffective by itself [20, 29, 36, 50], CFI necessitates a mecha-

nism that protects the integrity of return addresses, such as

write-protected shadow stacks [18, 25], to form an effective

defense [19]. However, software approaches to protecting

return address integrity either suffer from high performance

overhead (e.g., software-based shadow stacks [25, 30, 46, 133,

153]) or only provide probabilistic guarantees (e.g., informa-

tion hiding [18, 107, 119, 155]). Hardware-assisted shadow

stack protection, such as Control-flow Enforcement Technol-

ogy (CET) [117] on x86, offers the best security and perfor-

mance but is not natively available on AArch64.

In this paper, we present InversOS, a system that provides

AArch64 user-space applications with hardware-assisted

write-protected shadow stacks. InversOS does so without

requiring the most recent hardware security features on

AArch64 or modifying hardware. Instead, InversOS uses

two widely available AArch64 features [9], namely unprivi-
leged load/store instructions and Privileged Access Never, in a

novel way to create an efficient domain-based instruction-

level intra-address space isolation technique which we call

Privilege Inversion. With Privilege Inversion, InversOS runs

protected applications in the same privilege mode as an op-

erating system (OS) kernel, sets up incorruptible shadow

stack memory accessible only by unprivileged load/store

instructions, and ensures the safety of running privileged

user-space code via a combination of OS kernel modifica-

tions and compiler transformations. To keep compatibility

with legacy untransformed application binaries, InversOS
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repurposes another AArch64 feature to support coexistence

of legacy and protected applications securely and efficiently.

We built a prototype implementation of InversOS based

on the Linux kernel v4.19.219 [78] and the LLVM/Clang

compiler v13.0.1 [73]. We analyzed the security of Inver-

sOS and assessed the strength of its defense against differ-

ent types of control-flow hijacking attacks. Our evaluation

of InversOS on a real AArch64 system and a comprehen-

sive set of benchmarks and applications (LMBench [90],

SPEC CPU 2017 [121], and Nginx [124]) shows low per-

formance overhead (7.0% on LMBench, 7.1% on SPEC CPU

2017, and 3.0% on Nginx), indicating that InversOS is prac-

tical for deployment. We open-sourced InversOS at https:
//github.com/URSec/InversOS.

To summarize, we make the following contributions:

• We present Privilege Inversion, the first domain-based

intra-address space isolation technique for AArch64

user-space applications, using only widely available

features on commodity hardware.

• We designed and implemented InversOS, an OS-kernel-

compiler co-design that provides the first hardware-

assisted protected shadow stacks on AArch64 utilizing

Privilege Inversion and is compatible with existing

binaries.

• We evaluated the security and performance of Inver-

sOS and showed that InversOS is both efficacious and

efficient.

The rest of the paper is organized as follows. Section 2 pro-

vides background information. Section 3 defines our threat

model. Sections 4 and 5 describe the design and implementa-

tion of InversOS, respectively. Section 6 analyzes the security

of InversOS. Section 7 presents the performance evaluation

of InversOS, Section 8 discusses related work, and Section 9

concludes and discusses future work.

2 Background
In this section, we provide background information on pro-

tected shadow stacks. We also briefly introduce features of

AArch64 instruction set architecture (ISA) that are relevant

to the design and implementation of InversOS.

2.1 Protected Shadow Stacks
Control-flow hijacking attacks like ROP [111, 116] corrupt

saved return addresses on the stack. One way to mitigate

such attacks is to use shadow stacks [18], which keep copies

of return addresses in separate memory regions. When call-

ing a function, a return address is pushed onto both the

regular stack and the shadow stack; on return, the program

loads the return address from the shadow stack and either

compares it to the one on the regular stack to ensure its

validity [25, 33, 37] or jumps to the value loaded from the

shadow stack directly [2, 53, 119, 153, 155]. To enforce re-

turn address integrity, however, shadow stacks themselves

User-Kernel Space Gap
User
Space

Kernel
Space

0
↓

0x00..0ff..f
↓

0xff..f00..0
↓

0xff..f
↓

Max 52 Bits Set Max 52 Bits Cleared

Figure 1. AArch64 Virtual Address Space

require protection that disallows illegal modifications. Prior

approaches to protecting shadow stack integrity rely on sys-

tem calls [25, 46, 133], software fault isolation (SFI) [30, 153],

information hiding [18, 107, 119, 155], or special hardware

such as segmentation [2], Memory Protection Extensions

(MPX) [18, 60, 65], Memory Protection Keys (MPK) [18, 53],

and CET [117]). To the best of our knowledge, no hardware-

assisted shadow stack protection exists on AArch64.

2.2 AArch64 Architecture
Exception Levels. AArch64 [9] provides four Exception

Levels from EL0 to EL3, with increasing execution privileges.

Typically user-space software executes in EL0 and OS kernels

execute in EL1. EL2 and EL3 are for hypervisors and a secure

monitor, respectively. A processor core enters from a lower

Exception Level to a same or higher non-EL0 Exception Level

via taking synchronous exceptions (e.g., traps, system calls)

or asynchronous exceptions (e.g., interrupts) and returns

via executing an ERET instruction. Each Exception Level

EL𝑥 has a dedicated stack pointer register SP_EL𝑥 . Software
running in EL𝑥 (𝑥 ≥ 1) can select SP_EL0 or SP_EL𝑥 as

the current stack pointer, referred to as running in EL𝑥t

or EL𝑥h (i.e., thread or handler mode). The two modes are

different only in the stack pointer register in use, which

also determines the set of exception vectors to use when an

exception occurs that targets the same Exception Level. The

Linux kernel, as of v4.19.219, executes in EL1h and leaves

EL1t (and thus the corresponding set of exception vectors)

unused [78]. Unless otherwise noted, hereafter we only focus

on EL0 and EL1(t/h) and refer to them as unprivileged and

privileged (thread/handler) modes, respectively.

Address Space and Page Tables. AArch64 [9] uses hier-
archical page tables and a hardware memory management

unit (MMU) to provide virtual memory, with two Translation

Table Base Registers TTBR0_EL1 and TTBR1_EL1 holding the
root page table addresses. TTBR0_EL1 is for the lower half of

the virtual address space (which typically corresponds to the

user space), while TTBR1_EL1 is for the upper half (which

typically corresponds to the kernel space). Not all 64 bits of

an virtual address are used in address translation; AArch64

supports a virtual address space up to 52 bits, thus leaving a

gap between the two halves, as Figure 1 shows.
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AArch64 [9] supports page-level access permissions, con-

trolled by the UXN (Unprivileged eXecution Never) bit, the

PXN (Privileged eXecution Never) bit, and two AP[2:1] (Ac-

cess Permission) bits in last-level page table entries (PTEs).

As the names imply, UXN and PXN, when set, disable unprivi-

leged and privileged instruction access of the corresponding

page, respectively. AP[1] disables unprivileged data access

when cleared, and AP[2] disables write access when set.

In addition to the above PTE bits, AArch64 [9] also sup-

ports hierarchical access permission control via the UXNTable
bit, the PXNTable bit, and two APTable[1:0] bits in top- and
mid-level PTEs (PTEs that point to a next-level page table

rather than a page). Unlike their last-level PTE counterparts,

these bits can apply access restrictions to the whole corre-

sponding address range on top of the permission of subse-

quent levels. When set, UXNTable and PXNTable disallow

unprivileged and privileged instruction access, respectively.

APTable[0] disallows unprivileged data access when set,

and APTable[1] disallows write access when set. The Linux

kernel, as of v4.19.219, always keeps these bits cleared and

instead only controls access permissions at page level [78].

Unprivileged Load/Store Instructions. A special fea-

ture of AArch64 [9] (and many other ARM ISAs such as

ARMv7-M [8]) is unprivileged load and store (LSU) instruc-

tions. These instructions, with mnemonics starting with

LDTR or STTR on AArch64, check unprivileged memory ac-

cess permissions even when executed in the privileged mode.

This makes LSU instructions useful in accessing user-space

memory inside the OS kernel (e.g., Linux’s get_user() and

put_user() functions [15]).

Architecture Extensions. AArch64 [9] has architecture
extensions; the initial ISA is called ARMv8.0-A, and subse-

quent releases (e.g., ARMv8.1-A) are based on the previous

ISA with new hardware features. Specifically, we focus on

the following hardware features: Privileged Access Never

(PAN), User Access Override (UAO), Hierarchical Permission

Disable (HPDS), and E0PD.

PAN [9] is an ARMv8.1-A feature which prevents privi-

leged code from accessing unprivileged-accessible data mem-

ory, similar to x86’s Supervisor Mode Access Prevention

(SMAP) [3, 61]. When PAN is enabled via setting the PAN bit

in the processor state PSTATE, all loads and stores (except

LSU instructions) executed in the privileged mode that try

to access memory accessible in the unprivileged mode will

generate a permission fault.

UAO [9] is an ARMv8.2-A feature which, when enabled via

setting the PSTATE.UAO bit, allows LSU instructions executed

in the privileged mode to act as regular loads/stores.

HPDS [9], introduced in ARMv8.1-A, allows disabling

hierarchical access permission bits (UXNTable, PXNTable,
and APTable[1:0]) during page table lookups. Software

running in the privileged mode can set the HPD{0,1} bits

in Translation Control Register TCR_EL1 to disable hier-

archical access permission checks in address translation

from TTBR{0,1}_EL1. However, as AArch64 allows caching
TCR_EL1.HPD{0,1} in translation lookaside buffers (TLBs),

flipping either bit may require a local TLB flush to take effect.

E0PD [9], introduced in ARMv8.5-A as a hardware mitiga-

tion to side-channel attacks that leverage fault timing (e.g.,

Meltdown [79]), prevents code running in the unprivileged

mode from accessing (lower or upper or both) halves of the

virtual address space and generates faults in constant time.

Similar to HPDS, there are two bits TCR_EL1.E0PD{0,1} that
privileged software can use to control whether unprivileged

access to which half of the address space is disabled.

3 Threat Model
We assume a powerful attacker trying to achieve arbitrary

code execution on a benign but potentially buggy application

by exploiting arbitrary memory read/write vulnerabilities

to hijack the control flow. We assume that the underlying

OS kernel and hardware are trusted and unexploitable, pro-

viding the user space with the basic W⊕X protection [105].

Non-control data attacks [22] (such as data-oriented pro-

gramming [59] and block-oriented programming [63]), side-

channel attacks, and physical attacks are out of scope. This

threatmodel is in linewith recentwork on user-space control-

flow hijacking attacks [28, 29] and defenses [18, 74, 75, 136].

4 Design
In this section, we present the design of InversOS. The goal

of InversOS is to provide low-cost return address integrity

to user-space applications running on commodity AArch64

systems, which may or may not come with the most recent

hardware security features such as Pointer Authentication

(PAuth), Branch Target Identification (BTI), and Memory

Tagging Extension (MTE) [9]. To do so, InversOS must only

rely on AArch64 features from the early ISA versions. We

therefore require InversOS’s target platform to support at

least PAN and HPDS (i.e., conforming to ARMv8.1-A [9]);

this allows InversOS to be deployed on most of AArch64

systems released since 2017 [139].

Overall, we devise InversOS as a co-design between an

OS kernel and a compiler. The InversOS-compliant OS ker-

nel utilizes Privilege Inversion, a novel intra-address space
isolation technique we invented, to provide user-space appli-

cations an extra protection domain accessible only by LSU

instructions. The InversOS-compliant compiler then instru-

ments user-space code to leverage the protection domain

for efficient protected shadow stacks as well as to enforce

forward-edge CFI [1, 2], allowing InversOS to protect user-

space applications without modifying their source code. The

nature of Privilege Inversion dictates running user-space

applications in the privileged mode; we therefore combine

CFI, a compile-time bit-masking compiler pass, a load-time

3



Elevated Task
(Privileged, PAN=1, UAO=0) Unprotected Pages 

(Privileged, AP[1]=0)

Protected Pages
(Unprivileged, AP[1]=1)

LDR/STR

LDTR/STTR

√

×
√

×

Figure 2. Compartmentalization by Privilege Inversion

code scanner in the OS kernel, and a set of kernel modifi-

cations to together ensure the safety and security of doing

so. Lastly, InversOS supports running legacy untransformed

applications to keep compatibility with existing binaries via

a novel use of HPDS or E0PD (if available).

4.1 Privilege Inversion
LSU instructions in AArch64, as described in Section 2.2,

show a great potential in implementing efficient intra-address

space isolation; previous work [26] has explored their usage

in kernel-level data isolation. However, using these instruc-

tions to compartmentalize user-space applications poses chal-

lenges as they act like regular loads/stores when executed

in the unprivileged mode. Essentially the underlying hard-

ware only supports one protection domain for unprivileged

software.

We devise Privilege Inversion, a novel intra-address space

isolation technique that creates a separate protection do-

main for AArch64 user-space applications. With Privilege

Inversion, the OS kernel runs a user-space application need-

ing an extra protection domain in the privileged mode. We

dub such an application as an elevated task. When launch-

ing an elevated task, the OS kernel configures its memory

pages as unprivileged-inaccessible (i.e., with AP[1] cleared
in PTEs), marks its code pages as privileged-executable (i.e.,

with PXN cleared and UXN set in PTEs), and enables PAN dur-

ing its execution. Then, pages that the elevated task wants

to place in the separate protection domain are marked as

unprivileged-accessible (i.e., with AP[1] set in PTEs). Note

that the elevated task’s pages are still mapped to the user

space (translated by TTBR0_EL1); the above changes only

apply to their access permission bits in the PTEs. This con-

figuration allows LSU instructions in elevated task code to

access the protected pages but forbids accesses to themmade

by all regular loads/stores due to PAN. In the meanwhile,

it leaves all other unprotected pages in the elevated task

accessible by regular loads/stores but inaccessible by LSU

instructions, effectively compartmentalizing the elevated

task into two separate protection domains (one for regular

loads/stores and the other for LSU instructions), as Figure 2

shows. Note that in systems with UAO support, UAO has to

be turned off during elevated task execution; otherwise LSU

instructions would act just like regular loads/stores.

However, in order to make Privilege Inversion safe and

useful, we need to address the following challenges:

Challenge 1. As elevated tasks run in the privileged mode,
kernel memory becomes accessible by their regular loads/stores.

Challenge 2. As elevated tasks run in the privileged mode,
their control-flow transfer instructions can jump to the kernel
space to execute arbitrary kernel code (i.e., kernel memory with
PXN cleared).

Challenge 3. As elevated tasks run in the privileged mode,
they may contain and execute special privileged instructions
that would only be allowed to execute in kernel code (e.g.,
instructions that flip PSTATE.PAN).

To address Challenge 1, we incorporate a set of kernel

modifications that mark all kernel memory as unprivileged-

accessible and disable PAN during kernel execution. Such

modifications, while radical in idea, effectively stop regular

loads/stores in elevated tasks from accessing kernel memory

and still keep the OS kernel functional. The ramifications

of modifying the OS kernel in this way are two folds. First,

LSU instructions in elevated tasks can now access kernel

memory. We therefore require that elevated tasks not con-

tain LSU instructions by themselves (which is the case in

C/C++ code compiled by GCC or LLVM/Clang) and use a

compiler pass to insert vetted LSU instructions for enforcing

the desired protection policies. Our shadow stack pass de-

scribed in Section 4.2 provides a good example. Second, if we

are to support running legacy untransformed applications in

the unprivileged mode still, they can access kernel memory

as well; Section 4.3 discusses how we tackle this problem.

To address Challenge 2, we use a bit-masking compiler

pass, which instruments all indirect control-flow transfer in-

structions (i.e., indirect calls, indirect jumps, and returns) in

elevated tasks by preceding them with a bit-masking instruc-

tion that clears the top bit of the target register.
1
This limits

the control-flow transfer target to be within the user space

or to become an invalid pointer pointing to the user-kernel

space gap. Such instrumentation alone, however, can be by-

passed by attacker-manipulated control flow that jumps over

the bit-masking instruction; we therefore combine it with

CFI to ensure its execution, which we discuss in Section 4.2.

Note that direct control-flow transfer instructions (i.e., direct

calls and jumps) do not need such instrumentation; their

target is PC-relative and always points to a known location

within the user space.

To address Challenge 3, we add to the OS kernel a load-

time code scanner which scans for privileged instructions

that unprivileged software should never execute. Whenever

a page in an elevated task is being marked as executable, the

OS kernel invokes our code scanner to scan the whole page;

1
AArch64 returns via the RET instruction, which uses the link register LR
(by default) or another explicitly specified register as the return address [9].

4



if the page contains any forbidden privileged instruction,

the execution permission of the whole page is denied. As

AArch64 instructions are 4-byte sized and aligned [9], a

linear non-overlapping scan should suffice.

4.2 Protected Shadow Stacks and Forward-Edge CFI
With Privilege Inversion creating an extra protection domain,

we can now leverage the protection domain to enforce effi-

cient shadow stack protection for the user space. Specifically,

the OS kernel allocates unprivileged memory for a shadow

stack when a new elevated task is launched via exec() or

when a new thread in an elevated task is created via clone().
The compiler utilizes a shadow stack pass to instrument ele-

vated task code; a copy of the return address is saved onto a

shadow stack via an STTR instruction inserted into the pro-

logue of functions that save the return address to the regular

stack, and the return address is loaded from the shadow stack

via an LDTR instruction inserted into the epilogue(s) of these

functions. A special case for shadow stacks to handle is ir-

regular control flow such as setjmp()/longjmp() in C and

exception handling in C++. Since support for such irregular

control flow depends on the specific shadow stack scheme

used [18], we discuss how our InversOS prototype supports

such code constructs in Section 5.2.

To form a complete control-flow protection, we couple our

shadow stacks with forward-edge CFI [1, 2], which ensures

that the target of indirect calls and jumps is within a set of

allowed code locations. Specifically, we use a label-based CFI

pass in the compiler. For each indirect call or tail-call indirect

jump in elevated task code, the pass inserts a CFI label at

the beginning of every function that might be the call target

and inserts a CFI check before the call. Similarly, for each

non-tail-call indirect jump in elevated task code, the pass

inserts a CFI label at the beginning of every successor basic

block and inserts a CFI check before the jump. The CFI check

ensures that a proper CFI label is present at the control-flow

target; otherwise it generates a fault and traps the execution.

4.3 Compatibility
Not all AArch64 user-space applications need a separate pro-

tection domain, nor can all of them be recompiled. InversOS

must therefore allow existing application and library binaries

that are not compiled by the InversOS-compliant compiler

to run without compromising its security.

We propose two methods to allow safe execution of legacy

applications in the unprivileged mode (dubbed as legacy
tasks), depending on hardware feature availability. In systems

with E0PD support (ARMv8.5-A and onward), the OS kernel

can directly enable E0PD via setting TCR_EL1.E0PD1 during

legacy task execution. This way, even though kernel memory

is marked unprivileged-accessible, legacy tasks running in

the unprivileged mode still cannot access kernel memory

translated by TTBR1_EL1.

Elevated Task
(Privileged, PAN=1, HPD1=1)

Legacy Task
(Unprivileged, HPD1=0)

Kernel Memory
(Unprivileged, AP[1]=1)

(Privileged, APTable[0]=1)

LDR/STR

LDR/STR

User Space 
(Per-Task)

Kernel Space 
(Shared)

×

×

Figure 3. Different “Views” of Kernel Memory Due to HPDS

In pre-ARMv8.5-A systems without E0PD support, how-

ever, we rely on HPDS to provide a less-efficient solution.

Specifically, the OS kernel first sets APTable[0] in all top-

and mid-level PTEs of kernel memory when establishing

page tables for the kernel space. This effectively marks all

kernel pages as unprivileged-inaccessible even if AP[1] in
their last-level PTEs is set. Then, the OS kernel enables

HPDS via setting TCR_EL1.HPD1 before running an elevated

task, disables HPDS via clearing TCR_EL1.HPD1 before run-
ning a legacy task, and flushes the local TLBs every time

after flipping TCR_EL1.HPD1. This way, legacy and elevated

tasks will possess different “views” of kernel memory, as

Figure 3 depicts. Specifically, legacy tasks see kernel mem-

ory as unprivileged-inaccessible due to APTable[0] being

set, while elevated tasks see kernel memory as unprivileged-

accessible because HPDS disables APTable[0] in top- and

mid-level PTEs and AP[1] in last-level PTEs takes effect. As

a result, both types of tasks cannot access kernel memory.

Note that relying on HPDS prevents the OS kernel from

mapping kernel memory with the largest huge pages on

certain systems (e.g., 1 GB huge pageswith a page size of 4 KB

and a 39-bit virtual address space), because such pages have

no top- or mid-level PTEs for setting APTable[0]. However,
we believe this has no practical impact on the OS kernel’s

address translation and memory usage; the use of the largest

huge pages is rare and infrequent.

5 Implementation
We implemented a prototype of InversOS on the Linux kernel

v4.19.219 [78] and the LLVM/Clang compiler v13.0.1 [73].

Using Tokei v12.1.2 [142], our kernel modifications include

1,815 lines of C code and 207 lines of assembly code, and

our changes to LLVM contain 1,003 lines of C++ code. To

provide complete and transparent InversOS support for user-

space applications, we also modified the musl libc v1.2.2 [45]

and LLVM’s LLD linker [87], compiler-rt builtin runtime

library [85], and libunwind [84], totalling 27 lines of C code,

131 lines of C++ code, and 299 lines of assembly code.
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Table 1. Forbidden Privileged Instructions by Code Scanner

Instruction Description

MRS∗/MSR∗ Read/Write System Register
IC∗/DC∗ Invalidate Instruction/Data Cache
TLBI Invalidate Translation Lookaside Buffer
HVC Hypervisor Call
SMC Secure Monitor Call
AT Address Translation
ERET Exception Return
CFP/CPP/DVP Prediction Restriction
LDGM/STGM/STZGM Load/Store Tag Multiple (MTE)
BRB Branch Record Buffer
SYS/SYSL Other System Instructions

∗ Instructions with Certain Operands Allowed

5.1 OS Kernel Modifications
Privilege Inversion requires running elevated tasks in the

privileged mode. As Linux does not use the privileged thread

mode (as Section 2.2 describes), our prototype therefore uti-

lizes it to run elevated tasks. This way, the Linux kernel

can keep using the privileged handler mode for its own op-

erations without interference from elevated tasks. It also

greatly simplifies our implementation. To enable the privi-

leged thread mode, our prototype enables an unused set of

exception vectors that are responsible for taking exceptions

from the privileged thread mode to the privileged handler

mode. Changes were also made to Linux’s existing AArch64

exception handler code so that our prototype can reuse most

of the code to handle exceptions from the privileged thread

mode and to resume elevated task execution properly. Note

that elevated tasks in our prototype still use the SVC instruc-

tion for system calls, which is unnecessary because elevated

tasks are already privileged; we leave system call optimiza-

tions as future work.

Apart from the architectural usage of AP[1], Linux also
uses AP[1] to distinguish whether a page is kernel or user

memory. As InversOS marks kernel memory unprivileged-

accessible, AP[1] can no longer serve for that purpose. Our

prototype therefore utilizes an unused bit (bit 63) in last-level

PTEs to differentiate between kernel and user memory; the

hardware MMU ignores this bit automatically [9].

When launching a new task, InversOSmust decidewhether

it should be run as a legacy or elevated task. For simplicity

and ease of implementation, our prototype checks the pres-

ence of an environment variable INVERSOS=1 to make such a

decision; if it is present, the task is started as an elevated task.

Production systems can use a more enhanced mechanism

(e.g., checking the presence of a code signature generated by

an InversOS-compliant compiler) to qualify an elevated task.

The load-time code scanner, as part of our kernel modifica-

tions, scans for illegal privileged instructions in elevated task

code. Instead of directly scanning a user-space code page,

our prototype maps the page to the kernel space for scanning

sub sp,  sp, #32
stp x29, lr, [sp, #16]
...
ldp x29, lr, [sp, #16]
add sp,  sp, #32
ret

sub  x28, x28, #8
sttr lr,  [x28]

ldtr lr,  [x28]
add  x28, x28, #8

sub  sp,  sp,  #32

stp  x29, lr,  [sp, #16]
...
ldp  x29, lr,  [sp, #16]

add  sp,  sp,  #32
ret

Figure 4. Shadow Stack Transformations

in order to avoid frequently calling get_user(). Table 1 lists
all types of privileged instructions that our prototype forbids,

which roughly correspond to instructions that would gener-

ate a fault when executed in the unprivilegedmode but might

not when executed in the privileged mode [9]. In particular,

MRS/MSR/IC/DC instructions with certain operands (e.g., read-

ing the unprivileged thread ID register TPIDR_EL0 via MRS)
are allowed in unprivileged software, so these instructions

are also permitted in elevated tasks.

Our kernel modifications take responsibility of setting

up and tearing down memory for protected shadow stacks

in elevated tasks, as Section 4.2 describes. Each shadow

stack region in an elevated task can grow as much as a

regular stack can grow, supporting both parallel and com-

pact shadow stack schemes [18]. To prevent shadow stack

overflow and underflow, each shadow stack region is sur-

rounded by two guard regions inaccessible by both regular

loads/stores and LSU instructions. Mappings of shadow stack

and guard regions are unmodifiable by munmap(), mremap(),
and mprotect() requests from the user space.

Lastly, our prototype implements the HPDS support for

running legacy tasks, as described in Section 4.3. We omit-

ted implementing the E0PD alternative due to the lack of

hardware that supports E0PD. As Linux has introduced sup-

port for E0PD since v5.6 [77] (which is enabled by default),

a simple backport of the relevant changes would suffice.

5.2 Compiler, Linker, and Library Modifications
We implemented the shadow stack, forward-edge CFI, and

bit-masking compiler passes in a single LLVM pass that

transforms LLVM machine intermediate representation (IR).

Our shadow stack transformations adopt the compact

shadow stack scheme [18] and reserve the X28 register (a

callee-saved register) as the shadow stack pointer register.

Figure 4 demonstrates our shadow stack transformations

performed on a function’s prologue and epilogue. Our proto-

type supports C’s setjmp()/longjmp() functions and C++

exception handling via modifications to the musl libc and

LLVM’s libunwind, respectively. Instead of directly guaran-

teeing the integrity of return address saved by setjmp()
or __unw_getcontext(), our prototype provides shadow

stack pointer integrity when restoring the saved context in

longjmp() or __libunwind_Registers_arm64_jumpto().
6



bti  c ; 0xd503245f

ldr  w1, [x8]
mov  w2, #0x245f
movk w2, #0xd503, lsl #16
eor  w1, w1, w2
cbnz w1, trap

udf  #0

foo:

bar:

trap:

...

...

blr  x8
...

...

...
blr x8
...

foo:
bar:

Figure 5. Forward-Edge CFI Transformations

Specifically, rather than overriding X28 with the saved value,

we unwind X28 step by step until a matched return address

is found or it reaches a guard region to cause shadow stack

underflow.

Our forward-edge CFI transformations use the BTI in-

structions as CFI labels to keep forward compatibility with

ARMv8.5-A’s BTI [9], a hardware-assisted forward-edge CFI

mechanism rolling out to new AArch64 processors. Proces-

sors not supporting BTI execute a BTI instruction as a no-

operation. An appropriate CFI check is inserted before every

indirect call or jump to ensure that the target contains a

correct CFI label (BTI C for indirect calls and tail-call in-

direct jumps and BTI J for non-tail-call indirect jumps).

Figure 5 illustrates our forward-edge CFI transformations

performed on an indirect call and one of its target func-

tions. On AArch64, a non-tail-call indirect jump can only be

generated from a switch or computed goto statement; the

former is bounds-checked against a read-only jump table,

and our prototype restricts the latter by transforming it to

a switch statement using the IndirectBrExpandPass [86].

Consequently, a non-tail-call indirect jump is limited to jump

within its function and cannot branch to other functions.

Our bit-masking transformation inserts an AND instruction
before every indirect call, indirect jump, or return to clear

the top bit of control-flow transfer target. For indirect calls

and jumps, the instruction is placed after the CFI check.

While our all-in-one LLVM machine IR pass transforms

most of elevated task code, it fails to cover certain pieces

of code in the user space when compiling the application.

One piece of untransformed code is the procedure linkage

table (PLT) generated by the linker. We therefore also modi-

fied LLD to be able to generate CFI-checked and bit-masked

PLT code. Another piece of untransformed code is Linux’s

virtual dynamic shared object (vDSO); it is compiled with

the Linux kernel and stored within the kernel’s read-only

data. We therefore applied our compiler transformations to

the vDSO as well during kernel compilation. The last case is

assembly code (including assembly files and inline assembly

statements). We manually instrumented assembly code in

the musl libc and compiler-rt builtin runtime library.

5.3 Discussion
Virtualization Host Support. ARMv8.1-A adds Virtual-

ization Host Extensions (VHE) [9] to accelerate hosted (Type

2) hypervisors such as Linux’s KVM [32] and FreeBSD’s

bhyve [42]. In pre-VHE systems, a host OS kernel (running

in EL1) needs to partition its hypervisor into a “high-visor”

(running in EL1) and a “low-visor” (running in EL2) and thus

incurs heavy overhead when context-switching between the

two parts. VHE allows the host OS kernel to run entirely in

EL2 to reduce the cost. The Linux kernel, as of v4.19.219 [78],

stays in EL2h for execution when having detected VHE sup-

port during early boot. Our prototype therefore transparently

supports running elevated tasks in EL2t in such a case.

AArch32 Support. Quite a few AArch64 processors still

allow running AArch32 (32-bit ARM) applications for com-

patibility. While there are no technical difficulties to support

an elevated task running in the AArch32 state (i.e., LSU in-

structions and PAN are also available on AArch32), we opted

not to implement AArch32 support for the sake of time.

6 Security Analysis
In this section, we analyze the security of InversOS by pro-

viding answers to the following security questions:

SQ1 Why is InversOS secure (to run instrumented elevated

tasks in the privileged mode and arbitrary legacy tasks

in the unprivileged mode)?

SQ2 How well does InversOS mitigate control-flow hijack-

ing attacks on elevated tasks?

6.1 Security by Design
To answer SQ1, we examine all potential ways to compro-

mise InversOS from a legacy or elevated task:

1. A task may try to read from/write to memory of other

tasks to break their confidentiality/integrity.

2. A task may try to read from/write to kernel memory

to break the confidentiality/integrity of the OS kernel.

3. A task may try to allocate an excessive amount of

resources (e.g., time, memory) to break the availability

of InversOS.

4. A task may try to execute detrimental instructions that

could undermine the security of InversOS.

5. A task may try to jump to kernel code and use kernel

code as a “confused deputy” for the above goals.

As each task’s memory (sans shared memory) is mapped ex-

clusively to the task’s own address space, reading andwriting

other tasks’ memory can only be carried out by accessing ker-

nel memory or jumping to kernel code. Since kernel memory

has AP[1] (and APTable[0], if using HPDS) set, accessing

kernel memory is disabled via PAN for elevated tasks and

via HPDS or E0PD for legacy tasks. Jumping to kernel code

is also impossible; having UXN set for kernel code prevents
legacy tasks from executing kernel code, while InversOS’s

7



CFI and bit-masking instrumentation ensures that control-

flow transfers in elevated tasks never reach the kernel space.

As for attacks on availability, we argue that InversOS does

not introduce new availability problems; running an elevated

task in the privileged mode does not prioritize it on resource

allocation over all other legacy or elevated tasks and the OS

kernel. The remaining case is privileged instructions, the

execution of which is restricted by hardware automatically

for legacy tasks and by InversOS’s load-time code scanner

for elevated tasks. Conclusively, InversOS does not introduce

new security flaws and is secure by design.

6.2 Efficacy against Control-Flow Hijacking
To answer SQ2, we first define and explain a list of invariants
that InversOS maintains for guaranteeing return address in-

tegrity of elevated tasks and then reason about why return

address integrity significantly reduces the control-flow hi-

jacking attack surface. Specifically, InversOS maintains the

following invariants for elevated tasks:

Invariant 1. A function in an elevated task either pushes
its return address in LR to a shadow stack, or never spills the
return address to memory.

Invariant 2. If a function in an elevated task pushed its return
address to a shadow stack, its epilogue will always load the
return address from the shadow stack location in which its
prologue saved the return address.

Invariant 3. An elevated task cannot corrupt shadow stacks
by itself or by using a system call as a “confused deputy” (e.g.,
calling read(fd, buf, size) where buf points to shadow
stack memory [138]).

Invariant 1 is easily upheld by our shadow stack pass,

which instruments LR-saving function prologues to push

LR to the shadow stack. With the counterpart instrumenta-

tion on epilogue(s) of these functions to pop LR from the

shadow stack, our shadow stack pass guarantees that only a

function’s prologue and epilogue(s) can update the shadow

stack pointer with a matched decrement/increment, con-

tributing to Invariant 2. Since our forward-edge CFI pass

ensures that all indirect calls and tail-call indirect jumps

target the beginning of a function and all non-tail-call indi-

rect jumps are restricted within their containing function,

shadow stack pointer decrements and increments are guar-

anteed to occur in a matched order, sustaining Invariant 2.

Finally, Invariant 3 is maintained because the shadow stacks

are unprivileged and no existing/new LSU instructions can

be exploited/introduced to corrupt the shadow stacks (due

to CFI/W⊕X), and because of the benign nature of elevated

tasks assumed by our threat model in Section 3.

With return address integrity, control-flow hijacking at-

tacks that require corrupting return addresses (such as return-

into-libc [126] and ROP [111, 116]) are effectively prevented.

Furthermore, as non-tail-call indirect jumps cannot break the

“jail” of their containing function, attacks that exploit indi-

rect jumps (such as JOP [13]) no longer work. The remaining

attack surface requires attackers to do purely call-oriented
programming (i.e., using only corrupted function pointers);

while such attacks are possible [44, 114], they are limited by

forward-edge CFI and can be further restrained if InversOS

refines CFI’s granularity. In short, InversOS greatly reduces

the control-flow hijacking attack surface for elevated tasks.

7 Performance Evaluation
We evaluated the performance of InversOS on a Station P2

mini-PC which has an RK3568 quad-core Cortex-A55 proces-

sor implementing the ARMv8.2-A architecture that can run

up to 2.0 GHz. The mini-PC comes with 8 GB of LPDDR4

DRAM up to 1,600 MHz, 64 GB of internal eMMC storage

(unused), and 1 TB of SATA SSD. It runs Ubuntu 20.04 LTS

modified by the manufacturer.

We ran all our experiments using two configurations: Base-

line and InversOS. In Baseline, we compiled program and

library code using LLVM/Clang v13.0.1 [73] without the

InversOS compiler transformations and ran the generated

binary executables on a Linux v4.19.219 kernel [78] with-

out our kernel modifications. In InversOS, all program and

library code was compiled with the InversOS compiler trans-

formations (i.e., shadow stack, forward-edge CFI, and bit-

masking transformations) and executed on the same version

of the Linux kernel modified with our kernel changes. When

running an InversOS executable, we set an environment

variable INVERSOS=1 to inform the OS kernel that the pro-

gram should be started as an elevated task, as Section 5.1

describes. As the processor lacks E0PD support, we rely on

HPDS to prevent legacy tasks from accessing kernel mem-

ory. Both configurations used -O2 optimizations and per-

formed static linking against the musl libc v1.2.2 [45] and

LLVM’s compiler-rt builtin runtime library v13.0.1 [85]. C++

code in our experiments was compiled with and statically

linked against libc++ [82], libc++abi [83], and libunwind [84]

from LLVM v13.0.1. Libraries for Baseline and InversOS are

compiled without and with our modifications described in

Section 5.2, respectively.

7.1 Microbenchmarks
To understand the performance impact of the InversOS Linux

kernel modifications, we used LMBench v3.0-alpha9 [90], a

microbenchmark suite that measures the latency and band-

width of various OS services. For each microbenchmark that

supports parallelism, we ran four parallel workloads to re-

duce variance.We report an average and a standard deviation

of 10 rounds of execution for each microbenchmark.
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Table 2. LMBench Latency (Lower is Better)

Microbenchmark Baseline (𝜇s) stdev (𝜇s) InversOS (×) stdev (×)

null syscall 0.148 0.000 1.047 0.007
read 0.482 0.001 1.054 0.004
write 0.351 0.002 0.991 0.003
stat 4.928 0.023 1.066 0.003
fstat 0.422 0.003 1.052 0.005
open/close 9.744 0.017 0.989 0.003
select 500 fd 24.365 0.017 1.002 0.001
signal install 0.375 0.001 1.059 0.003
signal catch 3.801 0.009 1.493 0.002
protection fault 0.408 0.005 0.980 0.029
pipe 16.115 0.067 0.948 0.004
AF_UNIX stream 27.314 0.618 1.051 0.008
AF_UNIX connect 99.329 0.733 1.012 0.009
fork+exit 266.767 6.945 1.256 0.012
fork+exec 562.585 7.046 1.188 0.009
fork+shell 2,878.983 12.869 4.007 0.015
page fault 0.910 0.016 1.038 0.009
mmap 1 MB 42.700 3.318 1.019 0.007
udp 76.490 0.214 1.018 0.005
tcp 63.472 0.200 1.011 0.002
connect 102.196 0.503 1.004 0.006
context switch 59.318 0.880 0.993 0.014
fcntl 8.772 1.643 0.992 0.219
semaphore 3.083 0.515 0.954 0.162
usleep 78.661 1.579 0.995 0.020

Geomean — — 1.103 —

Table 3. LMBench Bandwidth (Higher is Better)

Microbenchmark Baseline stdev InversOS stdev
(MB/s) (MB/s) (×) (×)

pipe 1,096.147 72.703 0.991 0.049
AF_UNIX stream 931.933 6.753 1.003 0.011
read 1 MB 3,706.665 65.823 0.978 0.013
read 1 MB open2close 3,474.633 45.699 0.990 0.015
mmap 1 MB 10,689.636 36.243 1.006 0.001
mmap 1 MB open2close 6,365.563 43.215 0.972 0.008
tcp 720.056 48.645 0.987 0.013

Geomean — — 0.989 —
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Figure 6. LMBench File Operation Rate (Higher is Better)

Tables 2 and 3 and Figure 6 show LMBench performance of

both Baseline and InversOS. Overall, InversOS incurred a geo-

metricmean of 7.0% overhead: 10.3% on latency, 1.1% on band-

width, and 2.2% on file operation rate. In most microbench-

marks the overhead is miniscule. Most notably, fork+shell

exhibited a 4× slowdown because InversOS had to scan every

code page of a newly executed shell. The same goes with

fork+exec, in which the executed program is much smaller

than the shell and thus incurred much less overhead (18.8%).

In fork+exit, the 25.6% overhead comes from an optimiza-

tion of copying code page PTEs upfront; Linux by default

only sets up shared page table mappings of a child process

at page faults (i.e., when the child first accesses the page),

which, however, would cause redundant code scanning in

InversOS as InversOS invokes the code scanner whenever a

page in an elevated task is marked executable. We therefore

optimized InversOS to avoid redundant code scanning by

copying an elevated task’s code page PTEs during fork()
and enabled this optimization in all InversOS experiments.

InversOS incurred 49.3% overhead in signal catching because

of additional flipping of PSTATE.UAO (due to PAN being dis-

abled) when setting up and tearing down a signal frame; this

could be optimized away by simply disabling UAO support

in the Linux kernel, which we opted not to in order to avoid

introducing less relevant changes.

7.2 Macrobenchmarks and Applications
To see how InversOS performs on real workloads, we used

SPEC CPU 2017 v1.1.9 [121] and Nginx v1.23.3 [124]. SPEC

CPU 2017 is a comprehensive benchmark suite containing

CPU- and memory-intensive programs written in C, C++,

and/or Fortran that stress a computer system’s performance.

Nginx is a high performance web server written in C that

has been widely used in the real world.

For SPEC CPU 2017, we evaluated 28 (out of 43) bench-

mark programs in C/C++ as LLVM/Clang cannot compile

Fortran code. We used the train (instead of the larger ref)
input set because train yielded execution time of at least

20 seconds in each benchmark already. We report average

execution time with 10 rounds of execution for each bench-

mark; standard deviations are negligible (less than 1%).

For Nginx, we used Nginx to host randomly generated

static files ranging from 1 KB to 512 MB with one worker

process listening to port 8080 for HTTP requests. We then

ran ApacheBench (ab) [6] on the same machine to measure

Nginx’s bandwidth of transferring files within a period of

10 seconds. We report an average and a standard deviation

over 10 rounds of execution for each file size.

Table 4 and Figure 7 present the Baseline performance of

SPECCPU 2017 andNginx, respectively. Figures 8 and 9 show

the performance overhead InversOS incurred on SPEC CPU

2017 and Nginx, respectively. Overall, InversOS increased

the execution time of SPEC CPU 2017 by a geometric mean

of 7.1% and degraded the bandwidth of Nginx by a geometric

mean of 3.0%. We studied the overhead on SPEC CPU 2017

and discovered that our software-based forward-edge CFI

caused most of the overhead; with that disabled, the over-

head decreased to a geometric mean of 1.9% (in particular,

xalancbmk’s overhead dropped down from more than 40%
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Table 4. SPEC CPU 2017 Execution Time (Lower is Better)

Benchmark (Rate) Baseline Benchmark (Speed) Baseline
(s) (s)

500.perlbench_r 135.795 600.perlbench_s 135.289
502.gcc_r 268.035 602.gcc_s 268.294
505.mcf_r 431.810 605.mcf_s 428.423
520.omnetpp_r 354.081 620.omnetpp_s 353.981
523.xalancbmk_r 242.465 623.xalancbmk_s 242.501
525.x264_r 96.540 625.x264_s 96.527
531.deepsjeng_r 203.713 631.deepsjeng_s 227.060
541.leela_r 216.941 641.leela_s 217.306
557.xz_r 128.610 657.xz_s 127.926
508.namd_r 157.894
510.parest_r 330.373
511.povray_r 25.722
519.lbm_r 231.428 619.lbm_s 1,718.814
526.blender_r 533.649
538.imagick_r 167.810 638.imagick_s 168.136
544.nab_r 396.789 644.nab_s 397.586
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Figure 7. Nginx Bandwidth (Higher is Better)

to less than 3%). This indicates that InversOS’s shadow stack

and bit-masking transformations and kernel modifications

have minimal performance impact on SPEC CPU 2017, com-

pared with software-based forward-edge CFI. Incorporating

BTI [9], we expect InversOS’s performance overhead to be

greatly reduced; with BTI, no explicit CFI checks (as shown

in Figure 5) are needed. However, as BTI does not provide

protected shadow stacks by itself, (post-)ARMv8.5-A systems

can still leverage InversOS’s Privilege Inversion to protect

the integrity of shadow stacks. Nginx saw significant vari-

ance especially on file sizes ≤ 128 KB. We suspect that the

cause of high variance is caching and file system behaviors.

8 Related Work
8.1 Control-Flow Integrity
Since the introduction of the original CFI work [1, 2], a long

line of research has been proposed to improve its precision,

performance, and/or applicability [4, 12, 14, 16–18, 21, 24,

27, 31, 33–35, 37, 39, 41, 43, 48, 49, 53, 56, 58, 60, 62, 64–

68, 74–76, 80, 88, 93, 97–100, 103, 107, 108, 117, 125, 128,

129, 133, 134, 136, 137, 143, 146–151, 153, 155]. As InversOS

leverages label-based CFI for forward edges and protected

shadow stacks for backward edges, we compare InversOS

with various types of CFI schemes.

Stateless CFI. The original CFI [1, 2] restricts forward-
edge indirect control-flow targets via a coarse-grained context-

insensitive analysis, which statically assigns a distinct label

to allowed targets (an equivalence class or EC) of each indi-

rect call or jump and inserts checks for a matched label at

indirect call and jump sites. Subsequent research on stateless

forward-edge CFI makes trade-offs between granularity and

performance [12, 97–99, 107, 125, 129, 134, 148, 150, 151],

strengthens other security policies [21, 43, 93, 149], or ap-

plies to new platforms [4, 14, 17, 31, 34, 41, 49, 64–66, 100,

108, 133, 137, 153]. Hardware support for stateless forward-

edge CFI (such as HAFIX [35], HCFI [27], Intel CET [117],

and ARM BTI [9]) has been proposed, which further lowers

the performance overhead but only provides coarse-grained

protection similar to the original CFI. InversOS’s forward-

edge CFI, while currently prototyped with two labels, can

seamlessly adopt any of the above available finer-grained

schemes for better security. It can also utilize BTI on newer

processors for better performance.

Stateful CFI. Due to imprecision of context-insensitive

CFI, researchers have focused on context-sensitive CFI poli-

cies that take previous execution history into account. Us-

ing a runtime monitor (inlined or as a separate process),

these systems track executed branches [24, 56, 103, 143,

147], paths [39, 58, 128], call-sites [67, 68], code pointer ori-

gins [68], or complete control flows [48, 80] to reduce the size

of ECs. However, such dynamic CFI schemes require hard-

ware features only found on x86 processors, such as Branch

Trace Store (BTS) [143], Last Branch Record (LBR) [24, 103,

128, 147], Performance Monitoring Unit (PMU) [147], Pro-

cessor Trace (PT) [39, 48, 56, 58, 80], Transactional Synchro-

nization Extensions (TSX) [67, 68], and MPX [68], limiting

their applicability on AArch64. Compared with stateful CFI,

InversOS offers a weaker protection on forward edges but

provides the strongest security on backward edges with bet-

ter performance and less resource consumption.

Shadow Stacks. The original CFI [1, 2] uses shadow stacks

for backward-edge protection; their debut dates back to

RAD [25] and StackGhost [46], which all used the compact

shadow stack design. Dang et al. [33] proposed the paral-

lel shadow stack design, improving the performance but

wasting more memory. As described in Section 2.1, in or-

der to guarantee return address integrity, shadow stacks

need a protection mechanism that forbids unauthorized tam-

pering. A few systems [33, 37] simply leave shadow stacks

unprotected, while some rely on system calls [25, 46, 133] or

SFI [30, 153] for protection but incur prohibitive overhead.

More commonly used is information hiding (i.e., ASLR [106]),
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which places shadow stacks at a random location in the ad-

dress space to increase the difficulty for attackers to locate

the shadow stacks [18, 107, 119, 155]. Though achieving

the best performance among software-only solutions, infor-

mation hiding provides the weakest guarantee and is vul-

nerable to information disclosure attacks [11, 47, 51, 101,

120, 122]. Hardware-assisted shadow stack protection sig-

nificantly lowers the performance cost and can be fulfilled

differently on different ISAs. On x86_32, segmentation [1, 2]

provides the most efficient implementation. CET [117] offers

native support for protected shadow stacks on x86_64 but

is only available on most recent processors [3, 61]; a few

solutions repurposed MPX [18, 60, 65] or MPK [18, 53] for

non-CET-equipped Intel processors but reported vastly dif-

ferent overhead numbers. HCFI [27] implements an in-chip

non-memory-mapped shadow stack on SPARC via a custom

ISA extension. In the microcontroller world, Silhouette [153]

and Kage [41] transform regular store instructions into LSU

stores on ARMv7-M [8], while CaRE [100] and TZmCFI [66]

leverage TrustZone-M on ARMv8-M [10]. To the best of

our knowledge, InversOS is the first to provide hardware-

assisted protected shadow stacks on AArch64; our Privilege

Inversion technique is inspired by Silhouette-Invert [153].

Cryptographic CFI. Mashtizadeh et al. [88] created Cryp-

tographic CFI (CCFI), which uses message authentication

codes (MACs) to sign and verify code pointers and leverages

x86’s AES-NI instructions to accelerate MAC calculation.

ARMv8.3-A’s PAuth [9] adds hardware support for pointer

authentication codes (PACs) and places PACs in unused up-

per bits of pointers. Qualcomm has adopted PAuth to en-

force CFI [110]. However, CCFI and plain PAuth suffer from

pointer reuse attacks, in which attackers use buffer overread

vulnerabilities [122] to harvest signed pointers for later reuse.

Utilizing PAuth, PARTS [76] signs code pointers with type

IDs; this limits reuse of signed return addresses within the

same functions and signed function pointers within the same

types. PACStack [75] and PACtight [62] are also based on

PAuth; both solutions sign a return address with the PAC of

the previous return address, creating an authenticated stack.

PACtight further signs a function pointer with its address

and a random tag. Studies on type-ID-based PACs [136] and

authenticated chain of return addresses [74] have also been

explored on RISC-V as custom ISA extensions. PAL [146]

uses PAuth to provide CFI for OS kernels.

As PACStack [75] and PACtight [62] share themost similar

threat model, assumptions, and security guarantees with In-

versOS, we compare InversOS with them in more detail. PAC-

Stack claims that its authenticated stack “achieves security

comparable to hardware-assisted shadow stacks without re-
quiring dedicated hardware”; we show that InversOS achieves

hardware-assisted shadow stacks with even less hardware
requirements (ARMv8.1-A’s PAN and HPDS vs. ARMv8.3-

A’s PAuth). Furthermore, PACStack requires forward-edge

CFI but reported performance numbers without accounting

its overhead. For an apples-to-apples comparison, InversOS

without forward-edge CFI outperforms PACStack (1.9% vs.

≈3.0% on SPEC CPU 2017 and ≤3.0% vs. 6–13% on Nginx).

PACtight enforces finer-grained forward-edge CFI than In-

versOS and its performance (4.0% on Nginx) is roughly on par

with InversOS. However, PACtight maintains an in-memory

metadata storage for the random tags at runtime and relies

on ASLR [106] to hide its location. Essentially, PAC-based

systems only offer probabilistic security even if the entropy
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they provide is large. In contrast, InversOS’s shadow stacks

are integrity-enforced, providing the strongest guarantees.

Other Approaches. Kuznetsov et al. [71] developed code-

pointer integrity (CPI), an approach to ensuring memory

safety of all code pointers and data related to code pointers.

CPI identifies such data via static analysis and instrumenta-

tion and places the data in isolated safe regions. Again, seg-

mentation [3, 61] and ASLR [106] were used to protect the

safe regions on x86_32 and x86_64, respectively. PACtight-

CPI [62] implements CPI using PAuth, incurring 4.07% perfor-

mance overhead on average. InversOS’s Privilege Inversion

provides an alternative option to protect CPI’s safe regions

with potentially less overhead. 𝜇RAI [4] enforces return ad-

dress integrity on microcontrollers by encoding return ad-

dresses in a reserved register and ensuring that the register

value is never corrupted; it relies on system calls to spill the

register value to protected memory when needing to fold a

call chain longer than what a single register can hold. While

𝜇RAI is in theory applicable to general-purpose systems like

x86 and AArch64, we believe such an approach provides

poor scalability and may incur high performance overhead

due to more nested function calls than on microcontrollers.

8.2 Intra-Address Space Isolation
InversOS uses Privilege Inversion for efficient intra-address

space isolation. We omit discussing custom hardware modifi-

cations that compartmentalize software (e.g., CODOMs [130]

and Mondrian [140, 141]) and limit our discussion on related

work utilizing recent commodity hardware. Approaches used

to enforce CFI are also not repeated here.

SFI [89, 132] instruments program loads and stores to

prevent them from accessing certain memory regions and

has been used to sandbox untrusted code [70, 115, 145].

While some systems [40, 69] accelerate SFI checks using

MPX on x86, the overhead of SFI is still considered high

(on both performance [138] and memory usage [18]) and

grows as the number of isolated regions increases. Further-

more, SFI often requires CFI to ensure that SFI checks are

not bypassed by attacker-manipulated control flow. Another

address-based isolation technique is hardware-enforced ad-

dress range monitoring. PicoXOM [118] enforces execute-

only memory (XOM) by configuring ARM debug registers

to watch over a code segment against read accesses. Such

approaches are limited by hardware resources available and

cannot scale up.

Recent defenses enforce domain-based isolation; memory

regions are associated with a protection domain, and differ-

ent mechanisms are used to allow or disallow accesses to the

protection domain at runtime. On x86, researchers have ex-

plored domain-based memory access control using hardware

features such as Virtual Machine Extensions (VMX) [54, 57,

69, 81, 91, 96, 109, 138], MPK [54, 55, 57, 104, 112, 113, 123,

127, 131, 135], SMAP [138], and CET [144]. ARMlock [154]

and Shreds [23] use ARM domains, which are only available

on AArch32 [9]. Previous work has also used LSU instruc-

tions for isolation. ILDI [26] utilizes LSU instructions and

PAN to protect a safe region inside the OS kernel; it relies on

a more privileged hypervisor to moderate sensitive kernel

operations. uXOM [72] transforms regular loads/stores to

LSU instructions to enforce XOM onmicrocontrollers, where

application code typically executes in the privileged mode

already. InversOS, employing Privilege Inversion, is the first

to extend domain-based isolation to AArch64 user space.

We notice that Privbox [70] and SEIMI [138], like InversOS,

also proposed executing user-space code in the privileged

mode (x86’s ring 0). Privbox does so to accelerate system call

invocation and uses SFI to safely run elevated code. The over-

head of its heavy instrumentation, however, may outweigh

its speedup from faster system calls on certain programs. In-

versOS can benefit from the idea of system call acceleration

for elevated tasks, which we leave as future work. SEIMI

flips SMAP (x86 equivalence to PAN) to create a safe region

for trusted user-space code; its OS kernel is then elevated to

run in ring -1 via VMX. Compared with SEIMI, InversOS’s

Privilege Inversion provides instruction-level isolation and

requires no frequent domain switching.

9 Conclusions and Future Work
In conclusion, we presented InversOS, a hardware-assisted

protected shadow stack implementation for AArch64, which

utilizes common hardware features to create novel and effi-

cient intra-address space isolation and safely executes user-

space code in the privileged mode via OS kernel and compiler

restraints. InversOS is backward-compatible with existing ap-

plication binaries by a novel use of another AArch64 feature.

Our analysis shows that InversOS is secure and effective in

mitigating attacks, and our performance evaluation demon-

strates the low costs of InversOS on real-world benchmarks

and applications. Our prototype of InversOS is open-sourced

at https://github.com/URSec/InversOS.
We see several directions for future work. First, we can

explore system call optimizations (such as Privbox [70]) for

elevated tasks; these tasks already run in the privileged mode

and can accelerate system call invocation by avoiding the

costly SVC instructions. Second, we can leverage Privilege

Inversion to enforce other security policies such as CPI [71]

and full memory safety [38, 94, 95, 152], reducing their over-

heads significantly. Finally, we intend to investigate potential

performance improvements to InversOS by using more re-

cent ISA features (e.g., BTI and E0PD) [9] on real hardware.
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