
Fast Execute-Only Memory for Embedded Systems

Zhuojia Shen

Department of Computer Science
University of Rochester

Rochester, NY

zshen10@cs.rochester.edu

Komail Dharsee

Department of Computer Science
University of Rochester

Rochester, NY

kdharsee@cs.rochester.edu

John Criswell

Department of Computer Science
University of Rochester

Rochester, NY

criswell@cs.rochester.edu

Abstract—Remote code disclosure attacks threaten embedded
systems as they allow attackers to steal intellectual property or
to find reusable code for use in control-flow hijacking attacks.
Execute-only memory (XOM) prevents remote code disclosures,
but existing XOM solutions either require a memory management
unit that is not available on ARM embedded systems or incur
significant overhead.

We present PicoXOM: a fast and novel XOM system for
ARMv7-M and ARMv8-M devices which leverages ARM’s Data
Watchpoint and Tracing unit along with the processor’s simplified
memory protection hardware. On average, PicoXOM incurs
0.33% performance overhead and 5.89% code size overhead on
two benchmark suites and five real-world applications.

I. INTRODUCTION

Remote code disclosure attacks threaten computer sys-

tems. Remote attackers exploiting buffer overread vulnera-

bilities [41] can not only steal intellectual property (e.g.,

proprietary application code, for reverse engineering), but

also leak code to locate gadgets for advanced code reuse

attacks [37], thwarting code layout diversification defenses like

Address Space Layout Randomization (ASLR) [32]. Embed-

ded Internet-of-Things (IoT) devices exacerbate the situation;

many of these microcontroller-based systems have the same

Internet connectivity as desktops and servers but rarely employ

protections against attacks [23], [36]. Given the ubiquity of

these embedded devices in industrial production and in our

lives, making them immune to code disclosure attacks is

crucial.

Recent research [7]–[9], [11], [14], [18]–[20], [26], [33],

[44] implements execute-only memory (XOM) to defend

against code disclosure attacks. Despite being unable to pre-

vent code pointer leakage from data regions such as heaps

and stacks, XOM enforces memory protection on the code

region so that instruction fetching is allowed but reading or

writing instructions as data is disallowed. This simple and

effective defense, however, is not natively available on low-end

microcontrollers. For example, the ARMv7-M and ARMv8-

M architectures used in mainstream devices support memory

protection but not execute-only (XO) permissions [4], [5].

uXOM [26] implements XOM on ARM embedded systems

but incurs significant performance and code size overhead

(7.3% and 15.7%, respectively) as it transforms most load

instructions into special unprivileged load instructions. Given

embedded systems’ real-time constraints and limited memory

resources, a practically ideal XOM solution should have close-
to-zero performance penalty and minimal memory overhead.

This paper presents PicoXOM, a fast and novel XOM

system for ARMv7-M and ARMv8-M devices using a memory

protection unit (MPU) and the Data Watchpoint and Tracing

(DWT) unit [4], [5]. PicoXOM uses the MPU to enforce

write protection on code and uses the unique address range
matching capability of the DWT unit to control read access

to the code region. On a matched access, the DWT unit

generates a debug monitor exception indicating an illegal

code read, while unmatched accesses execute normally without

slowdown. As PicoXOM disallows all read accesses to the

code segment, it includes a minimal compiler change that

removes all data embedded in the code segment.

We built a prototype of PicoXOM and evaluated it on an

ARMv7-M board with two benchmark suites and five real-

world embedded applications. Our results show that PicoXOM

adds negligible performance overhead of 0.33% and only has

a small code size increase of 5.89% while providing strong

protection against code disclosure attacks.

To summarize, our contributions are:

• PicoXOM: a novel method of utilizing the ARMv7-M

and ARMv8-M debugging facilities to implement XOM.

To the best of our knowledge, this is the first use of ARM

debug features for security purposes.

• A prototype implementation of PicoXOM on ARMv7-M.

• An evaluation of PicoXOM’s performance and code size

impact on the BEEBS benchmark suite, the CoreMark-

Pro benchmark suite, and five real-world embedded appli-

cations, showing that PicoXOM only incurs 0.33% run-

time overhead and 5.89% code size overhead.

The rest of the paper is organized as follows. Section II

provides background information on ARMv7-M and ARMv8-

M. Section III describes our threat model and assumptions.

Sections IV and V present the design and implementation of

PicoXOM, respectively. Section VI reports on our evaluation

of PicoXOM, Section VII discusses related work, and Sec-

tion VIII concludes the paper and discusses future work.

II. BACKGROUND

PicoXOM targets ARMv7-M and ARMv8-M architectures,

which cover a wide range of embedded devices on the market,

and it leverages unique features of these architectures. This

section provides important background material on the in-

struction sets, execution modes, address space layout, memory

protection mechanisms, and on-chip debug support found in

ARMv7-M and ARMv8-M.

7

2020 IEEE Secure Development (SecDev)

978-1-7281-8388-6/20/$31.00 ©2020 IEEE
DOI 10.1109/SecDev45635.2020.00017



Vendor_SYS 511 MB

Private Peripheral Bus 
(PPB) 1 MB

0xE0000000

0xE0100000

0xFFFFFFFF

0
0x20000000

0x40000000

0xE0000000

0x60000000

System 512 MB

External Devices 2 GB

Peripherals 512 MB
SRAM 512 MB
Code 512 MB

0xFFFFFFFF

Fig. 1. Memory Layout of ARMv7-M and ARMv8-M Architectures

A. Instruction Sets and Execution Modes

ARMv7-M [4] and ARMv8-M [5] are the mainstream M-

profile ARM architectures for embedded microcontrollers.

Unlike ARM’s A and R profiles, they only support the Thumb

instruction set which is a mixture of 16-bit and 32-bit densely-

encoded Thumb instructions.

ARMv7-M [4] supports two execution modes: unprivileged

mode and privileged mode. An ARMv7-M processor always

executes exception handlers in privileged mode, while ap-

plication code is allowed to execute in either mode. Code

running in unprivileged mode can raise the current execution

mode to privileged mode using a supervisor call instruction

(SVC). This is typically how ARMv7-M realizes system calls.

However, embedded applications usually run in privileged

mode to reduce the cost of system calls.

ARMv8-M inherits all the features of ARMv7-M and adds

a security extension called TrustZone-M [5] that isolates

software into a secure world and a non-secure world; this

effectively doubles the execution modes as software can be

executing in either world, privileged or unprivileged.

B. Address Space Layout

Both ARMv7-M [4] and ARMv8-M [5] architectures oper-

ate on a single 32-bit physical address space and use memory-

mapped I/O to access external devices and peripherals. As

Figure 1 shows, the address space is generally divided into

eight consecutive 512 MB regions; the Code region maps

flash memory/ROM that contains code and read-only data,

the SRAM region typically contains heaps and stacks, and

the System region holds memory-mapped system registers

including a Private Peripheral Bus (PPB) subregion. The PPB

subregion contains all critical system registers such as MPU

configuration registers and the Vector Table Offset Register

VTOR. All other regions are for memory-mapped peripherals

and external devices. Note that ARMv7-M and ARMv8-M

do not have special privileged instructions to access system

registers mapped in the System region; instead, they can be

modified by regular load and store instructions.

C. Memory Protection Unit

ARMv7-M and ARMv8-M devices do not have a memory

management unit (MMU) that supports virtual memory; in-

stead, they support an optional MPU that can be configured to

enforce region-based access control on physical memory [4],

[5]. A typical ARMv7-M device supports up to 8 MPU

regions, each of which is configurable with a base address, a

power-of-two size from 32 bytes to 4 GB, and separate access

permissions (R, W, and X) for privileged and unprivileged

modes. With TrustZone-M, ARMv8-M has separate MPU

configurations for secure and non-secure worlds [5]. MPU

configuration registers are in the PPB region.

There are, however, limitations on how one can configure

access permissions for an MPU region. First, the privileged

access permission cannot be more restrictive than the unpriv-

ileged one; this prohibits an MPU region with, for exam-

ple, unprivileged read-write and privileged read-only permis-

sions. Second, the PPB region is always privileged-accessible,

unprivileged-inaccessible, and non-executable regardless of

the MPU configuration. Third, and most importantly, the

MPU does not have the execute-only permission necessary

to support XOM; an MPU region is executable only if it is

configured as both readable and executable.

D. Debug Support

Debug support is another processor feature that ARMv7-

M and ARMv8-M devices can optionally support. Of all

components in the architecture’s debug support, we focus on

the DWT unit [4], [5] which provides groups of debug registers

called DWT comparators that support instruction/data address

matching, PC value tracing, cycle counters, and many other

functionalities. Most importantly, a DWT comparator enables

monitoring of read accesses over a specified address range;

if the processor reads from or writes to an address within a

specified range, the DWT comparator will halt the software

execution or generate a debug monitor exception. If, instead,

the access does not fall into the specified range, execution

proceeds as normal, and performance is unaffected. When

multiple DWT comparators are configured for data address

range matching, an access that hits any of them will trap.

On ARMv7-M, a DWT comparator can be configured to

match an address range by programming its base address with

a mask that specifies a power-of-two range size [4]. ARMv8-

M implements DWT address range matching by using two

consecutively numbered DWT comparators [5], where the first

one specifies the lower bound of the address range and the

second one specifies the upper bound.

III. THREAT MODEL AND SYSTEM ASSUMPTIONS

We assume a buggy but unmalicious application running

on an embedded device with memory safety vulnerabilities

that allow a remote attacker to read or write arbitrary memory

locations. The attacker wants to either steal proprietary ap-

plication code for purposes like reverse engineering or learn

the application code layout in order to launch code reuse

attacks such as Return-into-libc [42] and Return-Oriented

Programming (ROP) [35] attacks. Physical and offline attacks

are out of scope as we believe such attacks can be stopped by

orthogonal defenses [24], [36]. Our threat model also assumes

the application code and data is diversified, using techniques

such as those in EPOXY [13]. Therefore, remotely tricking

the buggy application into reading its code content becomes a

reasonable choice for the attacker.

8



LLVM
Application
Source Code

DWT 
Configuration

MPU 
Configuration

LLVM 
IR

Constant Island 
Removal

PicoXOM 
Binary

PicoXOM Run-time PicoXOM Compiler

Fig. 2. PicoXOM Workflow. PicoXOM components are shown in blue.

We assume that the target embedded device supports MPU

and DWT with enough configurable MPU regions and DWT

comparators. We assume that the device is running a single

bare-metal application statically linked with libraries, boot se-

quences, and exception handlers. The application is assumed to

run in privileged mode, as Section II-A dictates. For ARMv8-

M devices with TrustZone-M, the application is assumed to

reside in the non-secure world, while software in the secure

world is trusted.

IV. DESIGN

Figure 2 shows PicoXOM’s overall design. PicoXOM con-

sists of three components that together implement a strong and

efficient XOM on ARM embedded devices. First, PicoXOM

uses a specially-configured DWT configuration to detect read

accesses to program code. Second, it utilizes a special MPU

configuration that prevents write access to the code region

and prevents writeable memory from being executable. Third,

it employs a small change to the LLVM compiler [27] to

eliminate constant data embedded within the code region.

To use PicoXOM, embedded application developers merely

compile their code with the PicoXOM compiler and install it

on their embedded ARM device. On boot, the PicoXOM run-

time configures MPU regions and DWT comparators using

PicoXOM’s MPU and DWT configurations and then passes

control to the compiled embedded software.

A. W⊕X with MPU
PicoXOM requires that memory either be writeable or

executable but not both i.e., the W⊕X policy [31]; otherwise,

an attacker could simply inject code or overwrite code to

achieve arbitrary code execution. To enforce W⊕X, PicoXOM

configures the MPU regions at device boot time so that the

code region is readable and executable, read-only data is

read-only, and RAM regions are readable and writable. Note

that the MPU cannot configure memory to be executable

but unreadable; the MPU can configure a memory region as

executable only if it is also configured as readable [4], [5].

PicoXOM runs application code in privileged mode and

configures a background MPU region to allow read and write

access to the remainder of the address space such as periph-

erals. This, however, leaves critical memory-mapped system

registers in the PPB (such as MPU configuration registers

and VTOR) open to modifications, which can be leveraged

by an attacker to turn off MPU protections or, even worse,

implant a custom exception handler. Section IV-B discusses

how PicoXOM prevents such cases.

B. R⊕X with DWT
PicoXOM leverages ARM’s DWT comparators to watch

over the whole code region for read accesses. As Section II-D

states, each (pair) of DWT comparators available on an ARM

microcontroller can be configured to generate a debug monitor

exception when a memory access of a specified type to an

address within a specified range occurs. PicoXOM therefore

uses one (pair) of the available DWT comparators as follows:

1) At device boot time, PicoXOM configures a DWT com-

parator register (say DWT_COMP<n>) to hold the lower

bound of the code region.

2) PicoXOM then sets the address-matching range by ei-

ther writing the upper bound of the code region to

the next DWT comparator register DWT_COMP<n+1>
(for ARMv8-M) or writing the correct mask to the

corresponding DWT mask register DWT_MASK<n> (for

ARMv7-M).

3) PicoXOM enables the DWT comparator (pair) by con-

figuring the DWT function register DWT_FUNC<n>
for data address reads. For ARMv8-M devices,

DWT_FUNC<n+1> is also configured in order to form

address range matching.

4) Finally, PicoXOM enables the debug monitor exception

by setting the MON_EN bit (bit 16) of the Debug Excep-

tion and Monitor Control Register DEMCR.

With a DWT comparator (pair) set up for monitoring read

accesses to the code region, R⊕X is effectively enforced.

However, as Section IV-A stated, the DWT registers and

DEMCR are also memory-mapped system registers which could

be modified by vulnerable application code. An attacker could

leverage a buffer overflow vulnerability to reconfigure the

debug registers to neutralize PicoXOM.

We can address the issue in two ways. One approach is

to break the assumption that PicoXOM runs everything in

privileged mode. As code running in unprivileged mode has no

access to the PPB region regardless of the MPU configuration,

the system registers that PicoXOM must protect (e.g., MPU

configuration registers, DWT registers, DEMCR, and VTOR) are

all in the PPB region and therefore inherently safe from unpriv-

ileged tampering. However, this approach requires PicoXOM

to implement system calls that support privileged operations

which application code could previously perform, incurring

expensive context switching between privilege modes. The

other approach is to use extra (pairs of) DWT comparators

to prevent writes to critical system registers. For example,

on ARMv7-M, we can configure one DWT comparator to

write-protect the System Control Block SCB (0xE000ED00
– 0xE000ED8F) and DEMCR (0xE000EDFC) by setting the

lower bound and the size to 0xE000ED00 and 256 bytes,

respectively. Since MPU configuration registers are in the

SCB, they are protected as well. DWT registers on ARMv7-M

reside in a separate range (0xE0001000 – 0xE0001FFF),

9



ldr r0,=L
...

L: .word 0x12345678

movw r0,#0x5678
movt r0,#0x1234
...

Fig. 3. Constant Island Removal of a Load Constant

tbb [pc,r2]
L0: .byte (L1-L0)/2

.byte (L2-L0)/2

.byte (L3-L0)/2

...
L1: ...
L2: ...
L3: ...

...

adr.w r1,=L0
add.w r1,r1,r2,lsl #2
; indirect jump
mov pc,r1

L0: b.w L1
b.w L2
b.w L3
...

Fig. 4. Constant Island Removal of a Jump-Table Jump

so we can use another DWT comparator to write-protect that

range.

C. Constant Island Removal

By default, ARM compilers generate code that has con-

stant data embedded in the code region (so-called “constant

islands”). Since PicoXOM prevents the code from reading

these constant islands, these programs will fail to execute

when used with PicoXOM. PicoXOM therefore transforms

these programs so that all data within the program is stored

outside of the code region.

We have identified two cases of constant islands generated

by LLVM’s ARM code generator: load constants and jump-
table jumps. Figures 3 and 4 show examples of the two

cases, respectively, as well as their corresponding execute-only

versions to which PicoXOM transforms them. Specifically, in

the left part of Figure 3, a load constant instruction loads a

constant from a PC-relative memory location L into register

r0. Such instructions are usually generated to quickly load an

irregular constant in light of the limited immediate encoding

scheme of the Thumb instruction set [4], [5]. PicoXOM trans-

forms such load constants into MOVW and MOVT instructions

that encode the 32-bit constant in two 16-bit immediates, as

the right part of Figure 3 shows. Jump-table jump instructions

(TBB and TBH) [4], [5] are used to implement large switch

statements; the second register operand (r2 in Figure 4) serves

as an index into a jump table pointed to by the first register

operand (pc in Figure 4), and a byte/half-word offset is loaded

from the jump table to add to the program counter (pc) to

calculate the target of the jump. Optimizing compilers like

GCC and LLVM usually select pc as the first register operand

in order to reduce register pressure, forcing the jump table

to be located next to the jump-table jump itself. PicoXOM

transforms such jump-table jumps into instruction sequences

like that shown in the right part of Figure 4; it encodes

the original jump table’s contents into a sequence of branch

instructions and expands the jump-table jump into a few

explicit instructions that calculate which branch instruction to

jump to and perform an indirect jump.

V. IMPLEMENTATION

We built our PicoXOM prototype for the ARMv7-M archi-

tecture. Our prototype provides MPU and DWT configurations

as a run-time component written in C and executed at the

end of the device boot sequence. We implemented constant

island removal as a simple intermediate representation (IR)

pass in the LLVM 10.0 compiler [27]. The constant island

removal pass simply uses the existing -mexecute-only
option in LLVM’s Clang front-end and passes it along to the

link-time optimization (LTO) code generator. Our prototype

runs the constant island removal pass when linking the IR of

the application, libraries (e.g., newlib and compiler-rt), and

MPU and DWT configurations; this ensures that all code has

no constant islands. Our prototype adds 88 source lines of

C++ code to LLVM and has 177 source lines of C code in the

PicoXOM run-time. We leave the PicoXOM implementation

on ARMv8-M for future work.

Different ARM microcontrollers support different numbers

of MPU regions and DWT comparators, and the maximum

ranges of their DWT comparators may vary. Our prototype

runs on an STM32F469 Discovery board which supports up

to 8 MPU regions [39] and 4 DWT comparators [40]. Each

DWT comparator can only watch over a maximum address

range of 32 KB (a maximal mask value of 15), limiting our

prototype to the following two options:

1) Use all 4 DWT comparators to support a maximum code

size of 128 KB; the application must run in unprivileged mode

in order for the critical system registers to be write-protected.

2) Configure one DWT comparator to write-protect the

DWT registers (0xE0001000 – 0xE0001FFF) and another

to write-protect the SCB (0xE000ED00 – 0xE000ED8F)

and DEMCR (0xE000EDFC). This protects a maximum code

size of 64 KB using the remaining 2 DWT comparators.

To accommodate a wider range of applications on our

board with less performance loss, our prototype automatically

chooses one option over the other based on the application

code size. It rejects an application if the code size exceeds

our board’s 128 KB limit.

While our PicoXOM prototype only supports single bare-

metal embedded applications, PicoXOM can also support mul-

tiple applications running on an embedded real-time operating

system (RTOS) such as Amazon FreeRTOS [3]. On embedded

systems, the application and RTOS kernel code is linked into

a single shared code segment. PicoXOM can protect this code

segment with little adaptation.

VI. EVALUATION

We evaluated PicoXOM on our STM32F469 Discovery

board [40] which has an ARM Cortex-M4 processor imple-

menting the ARMv7-M architecture that can run as fast as

180 MHz. The board comes with 2 MB of flash memory,

384 KB of SRAM, and 16 MB of SDRAM, and has an LCD

screen and a microSD card slot. We configured the board to

run at its fastest speed to understand the maximum impact that

PicoXOM can incur on performance.

10



TABLE I
PERFORMANCE OVERHEAD ON BEEBS

Baseline PicoXOM Baseline PicoXOM
(ms) (×) (ms) (×)

aha-compress 821 1.0000 nettle-arcfour 814 1.0000
aha-mont64 856 0.9988 picojpeg 43,864 1.0027
bubblesort 4,392 1.0000 qrduino 40,877 1.0030
crc32 956 1.0000 rijndael 70,024 1.0018
ctl-string 630 1.0000 sglib-arraybin... 808 1.0000
ctl-vector 786 0.9987 sglib-arrayhea... 1,039 1.0000
cubic 35,140 1.0005 sglib-arrayqui... 735 1.0000
dijkstra 36,582 1.0000 sglib-dllist 1,800 1.0000
dtoa 631 1.0127 sglib-hashtable 1,302 1.0000
edn 3,167 1.0003 sglib-listinsert... 2,030 1.0000
fasta 16,900 0.9999 sglib-listsort 1,265 1.0008
fir 16,048 1.0000 sglib-queue 1,177 1.0000
frac 5,858 1.0323 sglib-rbtree 4,808 1.0025
huffbench 20,682 0.9995 slre 2,761 0.9873
levenshtein 2,685 1.0000 sqrt 38,506 1.0748
matmult-float 1,150 0.9991 st 20,906 1.0252
matmult-int 4,532 1.0000 stb perlin 5,132 1.0306
mergesort 24,353 1.0062 trio-snprintf 697 1.0100
nbody 128,126 1.0090 trio-sscanf 1,064 0.9915
ndes 2,039 0.9995 whetstone 112,754 1.0092
nettle-aes 5,687 0.9998 wikisort 113,195 1.0008

Min (×) 0.9873
Max (×) 1.0748
Geomean (×) 1.0046

To evaluate PicoXOM’s performance and code size over-

head, we used the BEEBS [30] and CoreMark-Pro [16]

benchmark suites and five embedded applications (FatFs-

RAM, FatFs-uSD, LCD-Animation, LCD-uSD, and PinLock).

BEEBS targets energy consumption measurement for em-

bedded platforms and is widely used in evaluating embed-

ded systems including uXOM [26], the state-of-the-art XOM

implementation on ARM microcontrollers. It consists of a

wide range of programs characterizing different workloads

seen on embedded systems, including AES encryption, data

compression, and matrix multiplication. Of all 80 benchmarks

in BEEBS, we picked 42 benchmarks that have an execution

time longer than 500 milliseconds when executed for 10,240

iterations. CoreMark-Pro is a processor benchmark suite

that works on both high-performance processors and low-

end microcontrollers, featuring five integer benchmarks (e.g.,

JPEG image compression, XML parser, and SHA-256) and

four floating-point benchmarks (e.g., fast Fourier transform

and neural network) that stress the CPU and memory. FatFs-
RAM and FatFs-uSD operate a FAT file system on SDRAM

and an SD card, respectively. LCD-Animation displays a

single animated picture loaded from an SD card. LCD-uSD
displays multiple static pictures from an SD card with fading

transitions. PinLock simulates a smart lock reading user input

from a serial port and deciding whether to unlock (send an I/O

signal) based on whether the SHA-256 hashed input matches a

precomputed hash. The above five applications represent real-

world use cases of embedded devices and were also used to

evaluate previous work [2], [12], [13].

We used the LLVM compiler infrastructure [27] to compile

benchmarks and applications into the default non-XO format,

with MPU and DWT disabled; this is our baseline. We then

used PicoXOM’s configuration, i.e. enabling MPU, DWT, and

constant island removal. Note that with PicoXOM, none of the

TABLE II
PERFORMANCE OVERHEAD ON COREMARK-PRO

Baseline PicoXOM Baseline PicoXOM
(ms) (×) (ms) (×)

cjpeg-rose7-... 10,200 1.0001 parser-125k 12,363 1.0012
core 83,160 0.9918 radix2-big-64k 21,955 0.9961
linear alg-... 22,962 1.0000 sha-test 25,463 0.9995
loops-all-... 33,830 0.9995 zip-test 23,227 1.0000
nnet test 282,398 1.0017

Min (×) 0.9918
Max (×) 1.0017
Geomean (×) 0.9989

 0.99

 0.995

 1

 1.005

 1.01

FatFs-RAM

FatFs-uSD
LCD-Animation

LCD-uSD
PinLock

N
o
rm

a
li

z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Baseline
PicoXOM

20,480 11,624 4,930 50,694 402

Fig. 5. Performance Overhead on Real-World Applications

benchmarks and applications exceeds the code size limitation

(128 KB) on our board. Only cjpeg-rose7-preset in

CoreMark-Pro has a code size larger than 64 KB and thereby

has to run in unprivileged mode; nevertheless, it does not

require source code modifications as it does not perform

privileged operations.

A. Performance

We measured PicoXOM’s performance on our benchmarks

and applications. We configured each BEEBS benchmark to

print the time, in milliseconds, for executing its workload

10,240 times. We ran each BEEBS benchmark 10 times

and report the average execution time. Each CoreMark-Pro

benchmark is pre-programmed to print out the execution time

in a similar way; the difference is that we configure each

benchmark to run a minimal number of iterations so that the

program takes at least 10 seconds to run for each experimental

trial. Again, we ran each benchmark 10 times and report the

average execution time. For the real-world applications, we

ran FatFs-RAM 10 times and report the average execution

time. The other applications exhibit higher variance in their

execution times as they access peripherals like an SD card,

an LCD screen, and a serial port, so we ran them 20 times

and report the average with a standard deviation. All other

programs exhibit a standard deviation of zero.

Tables I and II and Figure 5 present PicoXOM’s perfor-

mance on BEEBS, CoreMark-Pro, and the five real-world

applications, respectively; Figure 5 shows baseline execution

time in milliseconds on top of the Baseline bars. Overall,

PicoXOM incurs negligible performance overhead of 0.33%:

0.46% on BEEBS with a maximum of 7.48%, −0.11% on

CoreMark-Pro with a maximum of 0.17%, and 0.02% on the

applications with a maximum of 0.22%. Thirteen programs

11



TABLE III
CODE SIZE OVERHEAD ON BEEBS

Baseline PicoXOM Baseline PicoXOM
(bytes) (×) (bytes) (×)

aha-compress 30,164 1.0646 nettle-arcfour 29,988 1.0649
aha-mont64 31,236 1.0624 picojpeg 36,620 1.0599
bubblesort 29,868 1.0650 qrduino 37,228 1.0529
crc32 29,804 1.0654 rijndael 37,460 1.0516
ctl-string 30,668 1.0631 sglib-arraybin... 29,828 1.0654
ctl-vector 30,892 1.0624 sglib-arrayhea... 29,956 1.0651
cubic 42,428 1.0329 sglib-arrayqui... 30,036 1.0649
dijkstra 30,220 1.0644 sglib-dllist 30,364 1.0641
dtoa 36,204 1.0552 sglib-hashtable 30,164 1.0644
edn 30,940 1.0633 sglib-listinsert... 30,052 1.0649
fasta 29,956 1.0650 sglib-listsort 30,100 1.0648
fir 29,884 1.0651 sglib-queue 29,988 1.0650
frac 30,468 1.0626 sglib-rbtree 30,564 1.0639
huffbench 30,988 1.0628 slre 32,284 1.0603
levenshtein 30,140 1.0647 sqrt 30,372 1.0641
matmult-float 30,108 1.0644 st 31,124 1.0602
matmult-int 30,060 1.0650 stb perlin 31,140 1.0627
mergesort 30,852 1.0604 trio-snprintf 33,724 1.0675
nbody 30,684 1.0633 trio-sscanf 34,156 1.0668
ndes 31,028 1.0630 whetstone 40,164 1.0371
nettle-aes 31,756 1.0614 wikisort 34,332 1.0541

Min (×) 1.0329
Max (×) 1.0675
Geomean (×) 1.0614

0

10

20

30

40

50

60

70

80

cjpeg-rose7-preset

core
linear_alg-mid-100x100-sp

loops-all-mid-10k-sp

nnet_test

parser-125k

radix2-big-64k

sha-test

zip-test

FatFs-RAM

FatFs-uSD

LCD-Animation

LCD-uSD

PinLock

C
o

d
e
 S

iz
e
 (

K
B

)

Baseline
PicoXOM

Fig. 6. Code Size Overhead on CoreMark-Pro and Real-World Applications

exhibit a minor speedup with PicoXOM. We re-ran our ex-

periments with the MPU and DWT disabled so that the only

change to performance is due to constant island removal and

the alignment of the code segment (the DWT on ARMv7-

M requires the monitored address range to be aligned by

its power-of-two size). In this configuration, we observed the

same speedups, so either constant island removal and/or code

alignment is causing the slight performance improvement.

B. Code Size

We measured the code size of benchmarks and applications

by using the size utility on generated binaries and collecting

the .text segment size.

Table III and Figure 6 show the baseline code size and the

overhead incurred by PicoXOM on BEEBS, CoreMark-Pro,

and the five real-world applications, respectively. On average,

PicoXOM increases the code size by 6.14% on BEEBS, 4.39%

on CoreMark-Pro, and 6.52% on the real-world applications,

with a 5.89% overall overhead. We studied PicoXOM’s code

size overhead and discovered that constant island removal

caused the majority of the code size overhead, especially for

programs with relatively large code bases like CoreMark-Pro.

In fact, the additional code that sets up the MPU and DWT

only contributes a minor part of the overhead (1.22% and

0.53% on average, respectively).

VII. RELATED WORK

Two other XOM implementations exist for ARM micro-

controllers. uXOM [26] provides XOM for ARM Cortex-M

systems by transforming loads into special unprivileged load

instructions and configuring the MPU to make the code region

unreadable by unprivileged loads. uXOM similarly transforms

stores to protect the memory-mapped MPU configuration

registers. Since some loads and stores do not have unprivileged

counterparts, transforming them requires the compiler to insert

additional instructions, causing the majority of uXOM’s over-

head. PicoXOM is more efficient in both performance (0.33%

compared to uXOM’s 7.3%) and code size (5.89% compared

to uXOM’s 15.7%) as no such transformation is needed.

A trade-off for PicoXOM is the code size limit on some

ARMv7-M devices; we envision no such limit on ARMv8-M.

PCROP [38] is a programmable feature of the flash memory

which prevents the flash memory from being read out and

modified by application code but still allows code in the flash

memory to execute. However, PCROP is only available on

some STMicroelectronics devices and cannot be used for other

types of memory. In contrast, PicoXOM relies on the MPU and

DWT features [4], [5] which can be found on most conforming

devices and can protect code stored in any type of memory.

Hardware-assisted XOM has been explored on other ar-

chitectures. The AArch64 [6] and RISC-V [34] page tables

natively support XO permissions. NORAX [11] enables XOM

for commercial-off-the-shelf binaries on AArch64 that have

constant islands using static binary instrumentation and run-

time monitoring. Various approaches [9], [14], [18]–[20], [44]

leverage features of the MMU on Intel x86 processors [22]

to implement XOM. None of these approaches are applicable

on ARM embedded devices lacking an MMU. Lie et al. [28]

proposed an architecture with memory encryption to mimic

XOM, but it only provides probabilistic guarantees and cannot

be directly applied to current embedded systems. Compared to

solutions for systems lacking native hardware XOM support,

PicoXOM is faster as it has nearly no overhead.

Software can emulate XOM. XnR [7] maintains a sliding

window of currently executing code pages and keeps only

these pages accessible. It still allows read accesses to a subset

of code pages and may incur higher overhead for a smaller

sliding window size due to frequent page permission changes.

LR2 [8] and kRˆX [33] instrument all load instructions to

prevent them from reading the code segment. While these soft-

ware XOM approaches can generally be ported to embedded

devices, they can be bypassed by attacker-manipulated control

flow and are less efficient than hardware-assisted XOM [26].

There are also methods of hardening embedded sys-

tems. Early versions of SAFECode [15] enforced spatial

and temporal memory safety on embedded applications, and

12



nesCheck [29] uses static analysis to build spatial mem-

ory safety for simple nesC [17] applications running on

TinyOS [21]. PicoXOM enforces weaker protection than mem-

ory safety but supports arbitrary C programs (unlike SAFE-

Code and nesCheck) and does not rely on heavy static analysis

like nesCheck. RECFISH [43], μRAI [2], and Silhouette [45]

mitigate control-flow hijacking attacks on embedded systems.

They protect forward-edge control flow using coarse-grained

CFI [1] and backward-edge control flow by using either a

protected shadow stack [10] or a return address encoding

mechanism. EPOXY [13] randomizes the order of functions

and the location of a modified safe stack from CPI [25] to

resist control-flow hijacking attacks on bare-metal microcon-

trollers. These systems do not enforce XOM and are still

vulnerable to forward-edge corruptions; they can incorporate

PicoXOM’s techniques to mitigate forward-edge attacks with

negligible additional overhead.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented PicoXOM: a fast and novel XOM

system for ARMv7-M and ARMv8-M devices which leverages

ARM’s MPU and DWT unit. PicoXOM incurs an average

performance overhead of 0.33% and an average code size over-

head of 5.89% on the BEEBS and CoreMark-Pro benchmark

suites and five real-world applications.

In future work, we will investigate techniques to ensure

that randomization techniques utilizing PicoXOM are effective

against brute-force attacks. Embedded systems have limited

code placement options for code layout randomization, mo-

tivating us to investigate whether the entropy is sufficient

and develop techniques to strengthen code randomization

if necessary. We will also explore how to leverage debug

support like DWT to enforce other security policies with low

overhead.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

comments. This work was funded by ONR Award N00014-

17-1-2996.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. Alexandria, VA:
ACM, 2005, pp. 340–353. [Online]. Available: https://doi.org/10.1145/
1102120.1102165

[2] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer,
“μRAI: Securing embedded systems with return address integrity,” in
Proceedings of the 2020 Network and Distributed System Security
Symposium, ser. NDSS ’20. San Diego, CA: Internet Society, 2020.
[Online]. Available: https://doi.org/10.14722/ndss.2020.24016

[3] Amazon Web Services, Inc. FreeRTOS: Real-time operating system for
microcontrollers. [Online]. Available: https://aws.amazon.com/freertos

[4] ARMv7-M Architecture Reference Manual, Arm Holdings, June 2018,
DDI 0403E.d.

[5] ARMv8-M Architecture Reference Manual, Arm Holdings, October
2019, DDI 0553B.i.

[6] Arm Architecture Reference Manual: Armv8, for Armv8-A architecture
profile, Arm Holdings, March 2020, DDI 0487F.b.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny, “You can run but you can’t read: Preventing disclosure
exploits in executable code,” in Proceedings of the 21st ACM
Conference on Computer and Communications Security, ser. CCS
’14. Scottsdale, AZ: ACM, 2014, pp. 1342–1353. [Online]. Available:
https://doi.org/10.1145/2660267.2660378

[8] K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz,
and P. Larsen, “Leakage-resilient layout randomization for mobile
devices,” in Proceedings of the 2016 Network and Distributed System
Security Symposium, ser. NDSS ’16. San Diego, CA: Internet Society,
2016. [Online]. Available: https://doi.org/10.14722/ndss.2016.23364

[9] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, “ExOShim: Preventing
memory disclosure using execute-only kernel code,” in Proceedings of
the 11th International Conference on Cyber Warfare and Security, ser.
ICCWS ’16. Boston, MA: ACPI, 2016, pp. 56–64.

[10] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow
stacks,” in Proceedings of the 2019 IEEE Symposium on Security and
Privacy, ser. SP ’19. San Francisco, CA: IEEE Computer Society, 2019,
pp. 985–999. [Online]. Available: https://doi.org/10.1109/SP.2019.00076

[11] Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu,
H. Vijayakumar, and W. Shen, “NORAX: Enabling execute-only
memory for COTS binaries on AArch64,” in Proceedings of the 2017
IEEE Symposium on Security and Privacy, ser. SP ’17. San Jose,
CA: IEEE Computer Society, 2017, pp. 304–319. [Online]. Available:
https://doi.org/10.1109/SP.2017.30

[12] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic compartments for embedded systems,” in Proceedings of
the 27th USENIX Security Symposium, ser. Security ’18. Baltimore,
MD: USENIX Association, 2018, pp. 65–82. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/clements

[13] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava,
J. Koo, S. Bagchi, and M. Payer, “Protecting bare-metal embedded
systems with privilege overlays,” in Proceedings of the 2017 IEEE
Symposium on Security and Privacy, ser. SP ’17. San Jose, CA:
IEEE Computer Society, 2017, pp. 289–303. [Online]. Available:
https://doi.org/10.1109/SP.2017.37

[14] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy, ser. SP ’15. San Jose, CA:
IEEE Computer Society, 2015, pp. 763–780. [Online]. Available:
https://doi.org/10.1109/SP.2015.52

[15] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory
safety without garbage collection for embedded applications,” ACM
Transactions in Embedded Computing Systems, vol. 4, no. 1, pp.
73–111, February 2005. [Online]. Available: https://doi.org/10.1145/
1053271.1053275

[16] EEMBC. CoreMark-Pro: An EEMBC benchmark. [Online]. Available:
https://www.eembc.org/coremark-pro

[17] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” in Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, ser. PLDI
’03. San Diego, CA: ACM, 2003, pp. 1–11. [Online]. Available:
https://doi.org/10.1145/781131.781133

[18] J. Gionta, W. Enck, and P. Larsen, “Preventing kernel code-reuse attacks
through disclosure resistant code diversification,” in Proceedings of
the 2016 IEEE Conference on Communications and Network Security,
ser. CNS ’16. Philadelphia, PA: IEEE, 2016. [Online]. Available:
https://doi.org/10.1109/CNS.2016.7860485

[19] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’15. San Antonio, TX:
ACM, 2015, pp. 325–336. [Online]. Available: https://doi.org/10.1145/
2699026.2699107

[20] S. Gravani, M. Hedayati, J. Criswell, and M. L. Scott, “IskiOS:
Lightweight defense against kernel-level code-reuse attacks,” arXiv
preprint arXiv:1903.04654, March 2019. [Online]. Available: https:
//arxiv.org/abs/1903.04654

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in Proceedings
of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’00.

13



Cambridge, MA: ACM, 2000, pp. 93–104. [Online]. Available:
https://doi.org/10.1145/378993.379006

[22] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, May 2020, Order Number: 325462-072US.

[23] Y. Jin, G. Hernandez, and D. Buentello, “Smart Nest Thermostat: A
smart spy in your home,” in Black Hat USA, 2014.

[24] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of Things
security: A top-down survey,” Computer Networks, vol. 141, pp.
199–221, August 2018. [Online]. Available: https://doi.org/10.1016/j.
comnet.2018.03.012

[25] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation, ser. OSDI ’14.
Broomfield, CO: USENIX Association, 2014, pp. 147–163. [Online].
Available: https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/kuznetsov

[26] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM:
Efficient execute-only memory on ARM Cortex-M,” in Proceedings of
the 28th USENIX Security Symposium, ser. Security ’19. Santa Clara,
CA: USENIX Association, 2019, pp. 231–247. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/kwon

[27] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
2nd International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, ser. CGO ’04. Palo
Alto, CA: IEEE Computer Society, 2004. [Online]. Available:
https://doi.org/10.1109/CGO.2004.1281665

[28] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’00. Cambridge, MA: ACM, 2000, pp.
168–177. [Online]. Available: https://doi.org/10.1145/378993.379237

[29] D. Midi, M. Payer, and E. Bertino, “Memory safety for embedded
devices with nesCheck,” in Proceedings of the 2017 ACM Asia
Conference on Computer and Communications Security, ser. ASIACCS
’17. Abu Dhabi, United Arab Emirates: ACM, 2017, pp. 127–139.
[Online]. Available: https://doi.org/10.1145/3052973.3053014

[30] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, August 2013. [Online]. Available: https://arxiv.org/
abs/1308.5174

[31] PaX Team. (2000) Non-executable pages design & implementation.
[Online]. Available: https://pax.grsecurity.net/docs/noexec.txt

[32] ——. (2001) Address space layout randomization. [Online]. Available:
https://pax.grsecurity.net/docs/aslr.txt

[33] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P.
Kemerlis, “kRˆX: Comprehensive kernel protection against just-in-time
code reuse,” in Proceedings of the 12th European Conference on
Computer Systems, ser. EuroSys ’17. Belgrade, Serbia: ACM, 2017, pp.
420–436. [Online]. Available: https://doi.org/10.1145/3064176.3064216

[34] The RISC-V Instruction Set Manual, Volume II: Privileged Architecture,
RISC-V Foundation, June 2019, Document Version 20190608.

[35] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security, vol. 15, no. 1, pp. 2:1–2:34, March
2012. [Online]. Available: https://doi.org/10.1145/2133375.2133377

[36] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and
privacy challenges in industrial Internet of Things,” in Proceedings
of the 52nd Annual Design Automation Conference, ser. DAC ’15.
San Francisco, CA: ACM, 2015, pp. 54:1–54:6. [Online]. Available:
https://doi.org/10.1145/2744769.2747942

[37] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization,” in Proceedings of
the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13. San
Francisco, CA: IEEE Computer Society, 2013, pp. 574–588. [Online].
Available: https://doi.org/10.1109/SP.2013.45

[38] AN4701 Application Note: Proprietary Code Read-Out Protection on
Microcontrollers of the STM32F4 Series, STMicroelectronics, November
2016, DocID027893 Rev 3.

[39] PM0214 Programming Manual: STM32 Cortex®-M4 MCUs and MPUs
Programming Manual, STMicroelectronics, March 2020, PM0214 Rev
10.

[40] UM1932 User Manual: Discovery Kit with STM32F469NI MCU, STMi-
croelectronics, April 2020, UM1932 Rev 3.

[41] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the 2nd European Workshop on System Security, ser. EuroSec
’09. Nuremburg, Germany: ACM, 2009, pp. 1–8. [Online]. Available:
https://doi.org/10.1145/1519144.1519145

[42] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On
the expressiveness of return-into-libc attacks,” in Proceedings of the 14th
International Symposium on Recent Advances in Intrusion Detection,
ser. RAID ’11. Menlo Park, CA: Springer-Verlag, 2011, pp. 121–141.
[Online]. Available: https://doi.org/10.1007/978-3-642-23644-0 7

[43] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and
B. C. Ward, “Control-flow integrity for real-time embedded systems,” in
Proceedings of the 31st Euromicro Conference on Real-Time Systems,
ser. ECRTS ’19. Stuttgart, Germany: Schloss Dagstuhl–Leibniz-
Zentrum füer Informatik, 2019, pp. 2:1–2:24. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ECRTS.2019.2

[44] M. Zhang, R. Sahita, and D. Liu, “XOM-Switch: Hiding your code from
advanced code reuse attacks in one shot,” in Black Hat Asia, 2018.

[45] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J.
Walls, “Silhouette: Efficient protected shadow stacks for embedded
systems,” in Proceedings of the 29th USENIX Security Symposium,
ser. Security ’20. Boston, MA: USENIX Association, 2020, pp.
1219–1236. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/zhou-jie

14


