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Abstract

A great share of today’s computer systems, including most embedded and micro-

controller (MCU) systems and an increasing number of desktops and servers, run a

processor based on ARM architectures. Securing these systems against runtime attacks

that exploit common software vulnerabilities poses great challenges; effective mitiga-

tions usually incur prohibitive overhead, while practical defenses typically only provide

less-than-ideal security guarantees.

This dissertation makes four contributions to low-cost security policy enforcement

for ARM-based systems. First, we develop a novel compiler-based intra-address space

isolation technique and use it to efficiently enforce return address integrity for bare-

metal embedded applications running on ARM-based MCUs. Second, we leverage

ARM’s hardware debugging facilities to enforce execute-only memory with negligi-

ble overhead. Third, utilizing the execute-only memory we developed and combining

compiler- and hardware-based techniques, we measurably strengthen layout random-

ization defenses on ARM-based MCUs to effectively and efficiently resist leakage-

equipped attacks and their brute force variants. Lastly, we extend hardware-assisted

write-protected shadow stacks to AArch64 (64-bit ARM) user-space applications, us-

ing a novel combination of commonly available AArch64 hardware features, operating

system kernel modifications, and compiler transformations.
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Chapter 1

Introduction

In today’s world, computer systems that run a processor based on ARM architectures

are everywhere. Not only has ARM maintained a dominant market share on embedded

systems [24] and mobile platforms [103], but also ARM is gradually gaining popularity

on personal computers [14] and high-performance servers and data centers [11, 111,

176, 194]. There have been hundreds of billions of ARM processors in the world that

we currently depend on [220].

As ARM-based systems become more ubiquitous in production and in our daily

lives, a new realm has been opened in which adversaries leverage software flaws to

attack ARM-based systems. In particular, most of the software stack on ARM-based

embedded microcontrollers and a large portion of user-space applications running on

ARM processors are still written in memory-unsafe programming languages such as

C [131] and C++ [242]. As a result, such software suffers from memory safety vulner-

abilities (e.g., buffer overflows [275] and buffer overreads [241]) that could be exploited

by attackers to launch powerful runtime attacks. These attacks, aiming at stealing in-

tellectual properties or executing arbitrary code, pose serious threats to the safety and

security of modern computer systems.

In this dissertation, we explore efficient ways to enforce security policies that de-

fend against runtime attacks on software stacks of ARM systems. Our work tackles
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this problem for both tiny, resource-constrained microcontrollers (i.e., systems based

on M-profile ARM architectures [21, 23]) and powerful general-purpose application

processors (i.e., systems based on A-profile ARM architectures [22]). While there ex-

ists a plethora of approaches to mitigating the attacks in question, a common limitation

of these approaches is that they either incur high performance overhead or provide weak

security guarantees. Therefore, our work focuses on developing novel methods to lower

the costs of security policy enforcement that achieve the same or better efficacy against

the attacks. Lowering the costs of a security defense enables a greater chance for it to

be deployed in practice.

1.1 Low-Cost Security Enforcement for ARM Systems

Efficient Protected Shadow Stacks for Embedded Systems Embedded systems

based on microcontrollers (MCUs) are increasingly used for applications that can have

serious and immediate consequences if compromised—including automobile control

systems, smart locks, drones, and implantable medical devices. Due to resource and

execution-time constraints, C [131] is the primary language used for programming

these devices. Unfortunately, C is neither type-safe nor memory-safe, and control-flow

hijacking remains a prevalent threat [35, 213, 223].

We present Silhouette: a compiler-based defense that efficiently guarantees the in-

tegrity of return addresses, significantly reducing the attack surface for control-flow

hijacking. Silhouette combines an incorruptible shadow stack for return addresses with

checks on forward control flow and memory protection to ensure that all functions re-

turn to the correct dynamic caller. To protect its shadow stack, Silhouette uses store

hardening, an efficient intra-address space isolation technique targeting various ARM

architectures that leverages special store instructions found on ARM processors.

We implemented Silhouette for the ARMv7-M architecture [21], but our techniques

are applicable to other common embedded ARM architectures. Our evaluation shows
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that Silhouette incurs a geometric mean of 1.3% and 3.4% performance overhead on

two benchmark suites. Furthermore, we prototyped Silhouette-Invert, an alternative

implementation of Silhouette, which incurs just 0.3% and 1.9% performance overhead,

at the cost of a minor hardware change.

Fast Execute-Only Memory for Embedded Systems Remote code disclosure at-

tacks [230, 241] threaten embedded systems as they allow attackers to steal intellectual

property or to find reusable code for use in control-flow hijacking attacks. Execute-only

memory (XOM) [147] prevents remote code disclosures, but existing XOM solutions

either require a memory management unit that is not available on ARM embedded sys-

tems [40, 52, 65, 106, 107, 112, 280] or incur significant overhead [141].

We present PicoXOM: a fast and novel XOM system for ARMv7-M [21] and

ARMv8-M [23] devices which leverages ARM’s Data Watchpoint and Tracing unit

along with the processor’s simplified memory protection hardware. On average, Pi-

coXOM incurs 0.33% performance overhead and 5.89% code size overhead on two

benchmark suites and five real-world applications.

Leakage-Resistant Randomization for Microcontrollers Internet-of-Things de-

vices such as autonomous vehicular sensors, medical devices, and industrial cyber-

physical systems commonly rely on small, resource-constrained MCUs. MCU soft-

ware is typically written in C [131] and is prone to memory safety vulnerabilities that

are exploitable by remote attackers to launch code reuse attacks [35, 213, 223, 248] and

code/control data leakage attacks [95, 101, 230, 241].

We present Randezvous, a highly performant diversification-based mitigation to

such attacks and their brute force variants on ARM MCUs [21, 23]. Atop code/data

layout randomization [59] and an efficient execute-only code approach [227], Ran-

dezvous creates decoy pointers to camouflage control data in memory; code pointers in

the stack are then protected by a diversified shadow stack, local-to-global variable pro-
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motion, and return address nullification. Moreover, Randezvous adds a novel delayed

reboot mechanism to slow down persistent attacks and mitigates control data spray-

ing attacks via global guards. We demonstrate Randezvous’s security by statistically

modeling leakage-equipped brute force attacks under Randezvous, crafting a proof-of-

concept exploit that shows Randezvous’s efficacy, and studying a real-world CVE [75].

Our evaluation of Randezvous shows low overhead on three benchmark suites and two

applications.

Efficient Control-Flow Protection for AArch64 Applications With the increasing

popularity of AArch64 (64-bit ARM) processors in general-purpose computing, se-

curing software running on AArch64 systems against control-flow hijacking attacks

has become a critical part toward secure computation. Shadow stacks [43, 55] keep

shadow copies of function return addresses and, when protected from illegal modifica-

tions and coupled with forward-edge control-flow integrity [1, 2], form an effective and

proven defense against such attacks [46, 90]. However, AArch64 lacks native support

for write-protected shadow stacks, while software alternatives either incur prohibitive

performance overhead or provide weak security guarantees.

We present InversOS, the first hardware-assisted write-protected shadow stacks

for AArch64 user-space applications, utilizing commonly available features of

AArch64 [22] to achieve efficient intra-address space isolation (called Privilege In-

version) required to protect shadow stacks. Privilege Inversion adopts unconventional

design choices that run protected applications in the kernel mode and mark operating

system (OS) kernel memory as user-accessible; InversOS therefore uses a novel com-

bination of OS kernel modifications, compiler transformations, and another AArch64

feature to ensure the safety of doing so and to support legacy applications. We show

that InversOS is secure by design, effective against various control-flow hijacking at-

tacks, and performant on selected benchmarks and applications (incurring overhead of

7.0% on LMBench [172], 7.1% on SPEC CPU 2017 [232], and 3.0% on Nginx web
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server [244]).

1.2 Contributions

Thesis Statement: Advanced runtime attacks that exploit memory safety vulnerabilities

found in C/C++ code for intellectual property theft or remote code execution plague

ARM systems. We show that effective and low-cost mitigations to such attacks can be

achieved on ARM systems by utilizing novel combinations of modern hardware/archi-

tectural features and OS/compiler techniques.

This dissertation makes the following contributions:

• We developed store hardening, a novel compiler transformation technique for

enforcing efficient intra-address space isolation on ARMv7-M [21]. We designed

and implemented a system called Silhouette to enforce return address integrity for

bare-metal MCU applications with low costs, by using store hardening to protect

the integrity of shadow stacks.

• We proposed using ARM’s hardware debug features to enforce security policies.

We designed and implemented PicoXOM, a novel and efficient XOM realiza-

tion which utilizes debug registers on ARMv7-M [21] and ARMv8-M [23] for

monitoring against read accesses to code regions.

• We developed a set of novel compiler- and hardware-based techniques to enhance

the security of randomization and XOM on MCUs with limited entropy against

runtime attacks that leverage memory disclosure. On a diversification-based sys-

tem called Randezvous, we show that our techniques achieved the desired security

goals and incurred low performance costs.

• We designed and implemented Privilege Inversion, a novel and efficient intra-

address space isolation technique for AArch64 user-space applications, combin-
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ing OS kernel modifications, compiler transformations, and widely available ar-

chitectural features of AArch64. Utilizing Privilege Inversion, we prototyped an

OS-kernel-compiler co-design named InversOS that provides hardware-assisted

shadow stack protection on AArch64 and is compatible with legacy application

binaries.

1.3 Organization

The rest of the dissertation is organized as follows. Chapter 2 provides background in-

formation on ARM architectures. Chapter 3 is derived from our Silhouette paper [282]

and describes how we enforce write-protected shadow stacks for bare-metal MCU ap-

plications on ARMv7-M [21]. Chapter 4 is derived from our PicoXOM paper [227]

and presents how we utilize ARM debug registers to create execute-only memory for

ARMv7-M [21] and ARMv8-M [23]. Chapter 5, based on our Randezvous paper [228],

extends the system in Chapter 4 with a set of novel techniques to strengthen random-

ization on ARM MCUs against leakage-equipped code reuse attacks. Chapter 6, based

on our InversOS paper [226], elaborates how we extend write-protected shadow stacks

to AArch64 user-space applications. Chapter 7 concludes our current research and dis-

cusses directions for future work.
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Chapter 2

Background

In this chapter, we provide background knowledge and information of ARM architec-

tures, including ARMv7-M [21], ARMv8-M [23], and AArch64 [22]. We introduce

architectural features that are relevant to our work described in Chapters 3–6.

2.1 ARMv7-M and ARMv8-M Architectures

A great portion of our work (Chapters 3–5) targets ARMv7-M [21] and/or ARMv8-

M [23] architectures, which cover a wide range of embedded systems on the market.

Our work leverages unique features of the two architectures to fulfill low-cost security

enforcement for microcontrollers. We briefly summarize the instruction sets, privilege

and execution modes, address space layout, memory protection features, and on-chip

debug support of the two architectures.

2.1.1 Instruction Sets and Execution Modes

ARMv7-M [21] and ARMv8-M [23] are the mainstream M-profile ARM instruction

set architectures (ISAs) for embedded microcontrollers (MCUs), in which software is

commonly compiled into a single native code executable that contains all application,

library, and/or operating system kernel code. Unlike ARM’s A and R profiles, M-profile
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architectures only support the Thumb instruction set which is a mixture of 16-bit and

32-bit densely-encoded Thumb instructions.

ARMv7-M [21] supports two execution modes: unprivileged mode and privileged

mode. An ARMv7-M processor always executes exception handlers in privileged

mode, while application code is allowed to execute in either mode. Code running in

unprivileged mode raises the current execution mode to privileged mode either invol-

untarily by traps and interrupts or voluntarily by executing a supervisor call (SVC)

instruction. The latter is typically how ARMv7-M realizes system calls. However,

embedded applications usually run in privileged mode to reduce the cost of system

calls. Such applications also frequently use a Hardware Abstraction Layer (HAL) to

provide a software interface to device-specific hardware. HAL code is often generated

by a manufacturer-provided tool (e.g., HALCOGEN [246]), is linked directly into an

application, and runs within its address space.

ARMv8-M inherits all the features of ARMv7-M and adds a security extension

called TrustZone-M [23] that isolates software into a secure world and a non-secure

world; this effectively doubles the execution modes as software can be executing in

either world, privileged or unprivileged.

A unique feature of ARMv7-M and ARMv8-M architectures is special unprivi-

leged store instructions for storing 32-bit values (STRT), 16-bit values (STRHT), and

8-bit values (STRBT) [21, 23]. When a program is running in the processor’s privileged

mode, these store instructions are treated as though they are executed in unprivileged

mode, i.e., the processor always checks the unprivileged access permission when exe-

cuting an STRT, STRHT, or STRBT instruction regardless of whether the processor is

executing in privileged or unprivileged mode.
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Figure 2.1: General Address Space of ARMv7-M and ARMv8-M Architectures and
Usable Memory of NXP MIMXRT685-EVK Board (Remapping of the
Same Memory at Different Locations Excluded)

2.1.2 Address Space Layout

Both ARMv7-M [21] and ARMv8-M [23] architectures operate on a single 32-bit phys-

ical address space and use memory-mapped I/O to access external devices and periph-

erals. Figure 2.1 depicts the general address space of the two architectures [21, 23],

as well as all usable memory mapped on an NXP MIMXRT685-EVK board [190] that

we use. While the exact layout varies between hardware, the address space is generally

divided into eight consecutive 512 MB regions; the Code region maps flash memory

or ROM that contains code and read-only data, the Data region typically holds run-

time mutable data (e.g., heaps and stacks), and the System region contains memory-

mapped system registers including a Private Peripheral Bus (PPB) subregion. The PPB

subregion contains all critical system registers such as memory protection configuration

registers and the Vector Table Offset Register VTOR. All other regions are for memory-

mapped peripherals and external devices. Note that ARMv7-M and ARMv8-M do not

have special privileged instructions to access system registers mapped in the System

region; instead, they can be modified by regular load and store instructions. Also note

that, though code and data regions are up to 512 MB each, there is only 64 MB flash

memory for code and 4.5 MB SRAM for data on our board. As neither architecture sup-

ports virtual memory [21, 23], code/data layout randomization techniques are limited to

moving code/data within the physical address space and have much lower entropy than
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general-purpose machines with a 64-bit virtual address space and gigabytes of RAM.

2.1.3 Memory Protection Unit

ARMv7-M and ARMv8-M systems do not have a memory management unit (MMU)

that supports virtual memory; instead, they support an optional memory protection unit

(MPU) that privileged code can configure to enforce region-based access control on

physical memory [21, 23]. A typical ARMv7-M system supports up to eight MPU

regions, each of which is configurable with a base address, a power-of-two size from

32 bytes to 4 GB, and separate access permissions (read, write, and execute) for both

privileged and unprivileged modes. With TrustZone-M, ARMv8-M has separate MPU

configurations for both secure and non-secure worlds [23]. All MPU configuration

registers reside in the PPB region.

To prevent code injection [193], typically code is placed in non-writable and exe-

cutable MPU regions, and data is placed in writable and non-executable MPU regions.

There are, however, limitations on how one can configure access permissions for an

MPU region. First, the privileged access permission cannot be more restrictive than the

unprivileged one; this prohibits an MPU region with, for example, unprivileged read-

write and privileged read-only permissions. Second, the MPU assumes that the PPB

region is always privileged-accessible, unprivileged-inaccessible, and non-executable

regardless of the MPU configuration. Third, the MPU does not have the execute-only

permission necessary to support XOM; an MPU region is executable only if it is con-

figured as both readable and executable.

2.1.4 Debug Support

Debug support is another processor feature that ARMv7-M and ARMv8-M systems

can optionally support. Of all components in the architecture’s debug support, we fo-

cus on the DWT unit [21, 23] which provides groups of debug registers called DWT
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comparators that support instruction/data address matching, PC value tracing, cycle

counters, and many other functionalities. Most importantly, a DWT comparator en-

ables monitoring of read accesses over a specified address range; if the processor reads

from or writes to an address within a specified range, the DWT comparator will halt

the software execution or generate a debug monitor exception. If, instead, the access

does not fall into the specified range, execution proceeds as normal, and performance

is unaffected. When multiple DWT comparators are configured for data address range

matching, an access that hits any of them will trap.

On ARMv7-M, a DWT comparator can be configured to match an address range by

programming its base address with a mask that specifies a power-of-two range size [21].

ARMv8-M implements DWT address range matching by using two consecutively num-

bered DWT comparators [23], where the first one specifies the lower bound of the ad-

dress range and the second one specifies the upper bound.

2.2 AArch64 Architecture

AArch64 [22] is the 64-bit A-profile ARM ISA for general-purpose systems, targeted

by the last piece of our work (Chapter 6). We briefly introduce features of AArch64

pertinent to the design and implementation of our work, including exception levels, ad-

dress space and page tables, unprivileged load and store instructions, and architectural

extensions.

2.2.1 Exception Levels

AArch64 [22] provides four Exception Levels from EL0 to EL3, with increasing execu-

tion privileges. Typically user-space software executes in EL0 and OS kernels execute

in EL1. EL2 and EL3 are for hypervisors and a secure monitor, respectively. A proces-

sor core enters from a lower Exception Level to a same or higher non-EL0 Exception
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Level via taking synchronous exceptions (e.g., traps, system calls) or asynchronous

exceptions (e.g., interrupts) and returns via executing an ERET instruction. Each Ex-

ception Level ELx has a dedicated stack pointer register SP ELx. Software running in

ELx (x ≥ 1) can select SP EL0 or SP ELx as the current stack pointer, referred to as

running in ELxt or ELxh (i.e., thread or handler mode). The two modes are different

only in the stack pointer register in use, which also determines the set of exception vec-

tors to use when an exception occurs that targets the same Exception Level. The Linux

kernel, as of v4.19.219, executes in EL1h and leaves EL1t (and thus the corresponding

set of exception vectors) unused [152]. Within the context of AArch64, hereafter we

only focus on EL0 and EL1(t/h) and refer to them as the unprivileged and privileged

(thread/handler) modes, respectively.

2.2.2 Address Space and Page Tables

AArch64 [22] uses hierarchical page tables and a hardware memory management

unit (MMU) to provide virtual memory, with two Translation Table Base Registers

TTBR0 EL1 and TTBR1 EL1 holding the root page table addresses. TTBR0 EL1 is

for the lower half of the virtual address space (which typically corresponds to the user

space), while TTBR1 EL1 is for the upper half (which typically corresponds to the

kernel space). Not all 64 bits of an virtual address are used in address translation;

AArch64 supports a virtual address space up to 52 bits, thus leaving a gap between the

two halves, as Figure 2.2 shows.

AArch64 [22] supports page-level access permissions, controlled by the UXN (Un-

privileged eXecution Never) bit, the PXN (Privileged eXecution Never) bit, and two

AP[2:1] (Access Permission) bits in last-level page table entries (PTEs). As the

names imply, UXN and PXN, when set, disable unprivileged and privileged instruction

access of the corresponding page, respectively. AP[1] disables unprivileged data ac-

cess when cleared, and AP[2] disables write access when set.
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Figure 2.2: AArch64 Virtual Address Space

In addition to the above PTE bits, AArch64 [22] also supports hierarchical

access permission control via the UXNTable bit, the PXNTable bit, and two

APTable[1:0] bits in top- and mid-level PTEs (PTEs that point to a next-level page

table rather than a page). Unlike their last-level PTE counterparts, these bits can apply

access restrictions to the whole corresponding address range on top of the permission

of subsequent levels. When set, UXNTable and PXNTable disallow unprivileged and

privileged instruction access, respectively. APTable[0] disallows unprivileged data

access when set, and APTable[1] disallows write access when set. The Linux ker-

nel, as of v4.19.219, always keeps these bits cleared and instead only controls access

permissions at page level [152].

2.2.3 Unprivileged Load/Store Instructions

Similar to unprivileged store instructions (STRT, STRHT, and STRBT) on ARMv7-

M [21] and ARMv8-M [23] (which we introduced in Section 2.1.1), AArch64 also has

corresponding unprivileged load and store (LSU) instructions [22]. These instructions,

with mnemonics starting with LDTR or STTR, check unprivileged memory access per-

missions even when executed in the privileged mode. This makes LSU instructions use-

ful in accessing user-space memory inside the OS kernel (e.g., Linux’s get user()

and put user() functions [37]).
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2.2.4 Architecture Extensions

AArch64 [22] has architecture extensions; the initial ISA is called ARMv8.0-A, and

subsequent releases (e.g., ARMv8.1-A) are based on the previous ISA with new hard-

ware features. Specifically, we focus on the following hardware features: Privileged

Access Never (PAN), User Access Override (UAO), Hierarchical Permission Disable

(HPDS), and Preventing EL0 access to halves of address maps (E0PD).

Privileged Access Never PAN [22] is an ARMv8.1-A feature which prevents privi-

leged code from accessing unprivileged-accessible data memory, similar to x86’s Su-

pervisor Mode Access Prevention (SMAP) [4, 123]. When PAN is enabled via setting

the PAN bit in the processor state PSTATE, all loads and stores (except LSU instruc-

tions) executed in the privileged mode that try to access memory accessible in the un-

privileged mode will generate a permission fault.

User Access Override UAO [22] is an ARMv8.2-A feature which, when enabled via

setting the PSTATE.UAO bit, allows LSU instructions executed in the privileged mode

to act as regular loads/stores.

Hierarchical Permission Disable HPDS [22], introduced in ARMv8.1-A, al-

lows disabling hierarchical access permission bits (UXNTable, PXNTable, and

APTable[1:0]) during page table lookups. Software running in the privileged mode

can set the HPD{0,1} bits in Translation Control Register TCR EL1 to disable hi-

erarchical access permission checks in address translation from TTBR{0,1} EL1.

However, as AArch64 allows caching TCR EL1.HPD{0,1} in translation lookaside

buffers (TLBs), flipping either bit may require a local TLB flush to take effect.

Preventing EL0 access to halves of address maps E0PD [22], introduced in

ARMv8.5-A as a hardware mitigation to side-channel attacks that leverage fault timing
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(e.g., Meltdown [153]), prevents code running in the unprivileged mode from accessing

(lower or upper or both) halves of the virtual address space and generates faults in con-

stant time. Similar to HPDS, there are two bits TCR EL1.E0PD{0,1} that privileged

software can use to control whether unprivileged access to which half of the address

space is disabled.
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Chapter 3

Efficient Protected Shadow Stacks

for Embedded Systems

3.1 Introduction

Microcontroller-based embedded systems are typically developed in C [131], mean-

ing they suffer from the same memory errors that have plagued general-purpose sys-

tems [193, 213, 245]. Indeed, hundreds of vulnerabilities in embedded software have

been reported since 2017.1 Exploitation of such systems can directly lead to physical

consequences in the real world. For example, the control system of a car is crucial to

passenger safety; the security of programs running on a smart lock is essential to the

safety of people’s homes. As these systems grow in importance,2 their vulnerabilities

become increasingly dangerous [127, 178, 216].

Past work on control-flow hijacking attacks highlights the need to protect return

addresses, even when the software employs other techniques such as forward-edge

control-flow integrity (CFI) [45, 46, 62, 80, 109]. Saving return addresses on a sep-

arate shadow stack [43] is a promising approach, but shadow stacks themselves reside

1Examples include CVE-2017-8410 [69], CVE-2017-8412 [70], CVE-2018-3898 [74], CVE-2018-
16525 [71], CVE-2018-16526 [72], and CVE-2018-19417 [73].

2Both Amazon and Microsoft have recently touted operating systems targeting microcontroller-based
embedded devices [10, 175].
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in the same address space as the exploitable program and must be protected from cor-

ruption [43, 62]. Traditional memory isolation that utilizes hardware privilege levels

can be adapted to protect the shadow stack [255], but it incurs high overhead as there

are frequent crossings between protection domains (e.g., once for every function call).

Sometimes information hiding is used to approximate intra-address space isolation as

it does not require an expensive context switch. In information hiding, security-critical

data structures are placed at a random location in memory to make it difficult for ad-

versaries to guess the exact location [140]. Unfortunately, information hiding is poorly

suited to embedded systems as most devices have a limited amount of memory that

is directly mapped into the address space—e.g., the board used in this work has just

384 KB of SRAM and 16 MB of SDRAM [239].

This chapter presents Silhouette: an efficient write-protected shadow stack [77] sys-

tem that guarantees that a return instruction will always return to its dynamic legal des-

tination. To provide this guarantee, Silhouette combines a shadow stack, an efficient

intra-address space isolation mechanism that we call store hardening, a control-flow

integrity [2] implementation to protect forward-edge control flow, and a corresponding

memory protection unit (MPU) configuration to enforce memory access rules. Utilizing

the unprivileged store instructions on modern embedded ARM architectures, store hard-

ening3 creates a logical separation between the code and memory used for the shadow

stack and that used by application code. Unlike hardware privilege levels, store hard-

ening does not require expensive switches between protection domains. Also, unlike

the probabilistic protections of information hiding, protections based on store harden-

ing are hardware-enforced. Further, the forward-edge control-flow protection prevents

unexpected instructions from being executed to corrupt the shadow stack or load re-

turn addresses from illegal locations. Finally, the MPU configuration enforces memory

access rules required by Silhouette.

3uXOM [141] independently developed a similar technique for implementing execute-only memory.
We compare the implementation differences between store hardening and that of uXOM in Section 3.5.2.
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We focus on the ARMv7-M architecture [21] given the architecture’s popularity and

wide deployment; however, our techniques are also applicable to a wide range of ARM

architectures, including ARMv7-A [19] and the new ARMv8-M Main Extension [23].

We also explore an alternative, inverted version of Silhouette that promises significant

performance improvements at the cost of minor hardware changes; we call this version

Silhouette-Invert. We summarize our contributions as follows:

• We built a compiler and runtime system, Silhouette, that leverages store hard-

ening and coarse-grained CFI to provide embedded applications with efficient

intra-address space isolation and a protected shadow stack.

• We have evaluated Silhouette’s performance and code size overhead and found

that Silhouette incurs a geometric mean of 1.3% and 3.4% performance overhead,

and a geometric mean of 8.9% and 2.3% code size overhead on the CoreMark-

Pro and the BEEBS benchmark suites, respectively. We also compare Silhouette

to two highly-related defenses: RECFISH [255] and µRAI [9].

• We prototyped and evaluated the Silhouette-Invert variant and saw additional im-

provements with an average performance overhead measured at 0.3% and 1.9%

by geometric mean and code size overhead measured at 2.2% and 0.5%, again,

on CoreMark-Pro and BEEBS.

In addition to the above contributions, we observe that store hardening could be

extended to protect other security-critical data, making Silhouette more flexible than

other approaches. For example, Silhouette could be extended to isolate the sensitive

pointer store for Code-Pointer Integrity (CPI) [140]. Similarly, it could be used to pro-

tect kernel data structures within an embedded operating system (OS) such as Amazon

FreeRTOS [10].

The rest of the chapter is organized as follows: Section 3.2 introduces the threat

model. Section 3.3 explains how we can provide two protection domains efficiently on
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ARMv7-M systems. Section 3.4 presents how we use our intra-address space isola-

tion to build Silhouette, and Section 3.5 describes our prototype implementation. Sec-

tion 3.6 explains how Silhouette significantly reduces the control-flow hijacking attack

surface. Section 3.7 presents the experimental results, Section 3.8 elaborates the exten-

sibility of Silhouette, and Section 3.9 discusses related work.

3.2 Threat Model and System Assumptions

While embedded code can be conceptually divided into application code, libraries, ker-

nel code, and the hardware abstraction layer, there is often little distinction at runtime

between these logical units. Due to performance, complexity, and real-time considera-

tions, it is quite common for all of this code to run in the same address space, without

isolation, and with the same privilege level [59, 135, 141]. For example, under the

default configuration of Amazon FreeRTOS (v1.4.7), all code runs as privileged in

ARMv7-M [10]. These embedded characteristics heavily inform our threat model and

the design decisions for Silhouette.

Our threat model assumes a strong adversary that can exploit a memory error in the

application code to create a write-what-where style of vulnerability. That is, the adver-

sary can attempt to write to any location in memory at any time. The adversary’s goal is

to manipulate the control flow of a program by exploiting the aforementioned memory

error to overwrite memory (e.g., a return address). Non-control data attacks [49, 120]

are out of scope of this work. Further, we assume the adversary has full knowledge

of the memory contents and layout; we do not rely on information hiding for protec-

tion. Our threat model is consistent with past work on defenses against control-flow

hijacking.

We assume the target system runs a single bare-metal application statically linked

with all the library code and the HAL—the latter provides a device-specific interface to

the hardware. We assume the HAL is part of the trusted computing base (TCB) and is
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either compiled separately from the application code or annotated, allowing Silhouette

to forgo transformations on the HAL that might preclude privileged hardware opera-

tions. Similarly, we assume that exception handlers are part of the TCB. Further, we

assume the whole binary runs in privileged mode for the reasons mentioned previously.

Finally, we assume the target device includes a memory protection unit (or sim-

ilar hardware mechanism) for configuring coarse-grained memory permissions, i.e.,

Silhouette is able to configure read, write, and execute permissions for five regions

(summarized in Section 3.5.4) of the address space.

3.3 Intra-Address Space Isolation

Many security enforcement mechanisms rely on intra-address space isolation to pro-

tect security-critical data; in other words, the defenses are built on the assumption that

application code, under the influence of an attacker,i cannot modify security-critical

regions of the address space. For example, defenses with shadow stacks [43] need a

safe region to store copies of return addresses, and CPI [140] needs a protected region

of the address space to place its safe stack and sensitive pointer store. Complicat-

ing matters, defenses often intersperse accesses to the protected region with regular

application code; the former should be able to access the protected region while the

latter should not. Consequently, existing mechanisms to switch between protection

domains—e.g., system calls between unprivileged and privileged mode—are often too

inefficient for implementing these security mechanisms for microcontroller-based em-

bedded systems. Rather than incurring the performance penalty of true memory isola-

tion, some defenses hide the security-critical data structures at random locations in the

address space [43, 59, 140, 228]. Embedded systems have limited entropy sources for

generating random numbers and only kilobytes or megabytes of usable address space;

information hiding in general is unlikely to provide effective shadow stack protection

on such systems with limited entropy.
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Figure 3.1: Architecture of Silhouette and the Silhouette-Invert Variant

We devise a protection method, store hardening, for embedded ARM systems uti-

lizing unprivileged store instructions. We leverage this feature to create two protection

domains. One unprivileged domain contains regular application code and only uses the

unprivileged STRT, STRHT, and STRBT instructions for writing to memory. The other

privileged domain uses regular (i.e., privileged) store instructions. As code from both

domains runs in the same, privileged, processor mode, this method allows us to enforce

memory isolation without costly context switching.

To completely isolate the data memory used by the unprivileged and privileged do-

mains, two additional features are needed. First, there needs to be a mechanism to

prevent unprivileged code from jumping into the middle of privileged code; doing so

could allow unprivileged code to execute a privileged store instruction with arbitrary

inputs. We can use forward-edge CFI checks to efficiently prevent such attacks. Sec-

ond, a trusted code scanner must ensure that the code contains no system instructions

that could be used to modify important program state without the use of a store instruc-

tion. For example, an adversary could use the MSR instruction [21] to change the value

of the main or process stack pointer registers (MSP and PSP, respectively), effectively

changing the location of the shadow stack and potentially moving it to an unprotected

memory region. We discuss a defense that leverages these techniques in the next sec-

tion.
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3.4 Silhouette Design

Silhouette is a compiler and run-time system that leverages our memory isolation

scheme to efficiently protect embedded systems from control-flow hijacking attacks.

As Figure 3.1 shows, Silhouette transforms application code with four new compiler

passes placed after native code generation but before linking the hardened object code

with the hardware abstraction layer (HAL). We also explore an alternative, inverted

version of these passes that promises significant performance improvements at the cost

of minor hardware changes; we call this version Silhouette-Invert (see Section 3.4.6).

Silhouette’s new compiler passes are as follows:

1. Shadow Stack Transformation: The shadow stack transformation modifies the

native code to save return values on a shadow stack and to use the return value

stored in the shadow stack in return instructions.

2. Store Hardening: The store hardening pass modifies all store instructions, ex-

cept those used in the shadow stack instrumentation and Store-Exclusive in-

structions [21] (see Section 3.4.2 for the reasons), to use variants that check the

unprivileged-mode permission bits.

3. CFI Transformation: The CFI transformation instruments indirect function

calls and other computed branches (aside from returns) to ensure that program

execution follows a pre-computed control-flow graph. Consequently, this instru-

mentation prevents the execution of gadgets that could, for example, be used to

manipulate protected memory regions.

4. Privileged Code Scanner: The privileged code scanner analyzes the native code

prior to emitting the final executable to ensure that application code is free of

privileged instructions that an adversary might seek to use to disable Silhouette’s

protections.
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In addition to the above transformations, Silhouette employs mechanisms to pre-

vent memory safety errors from disabling the hardware features that Silhouette uses to

provide its security guarantees. In the context of ARMv7-M, it means that the MPU

cannot be reconfigured to allow unprivileged accesses to restricted memory regions.

Also note that the HAL library is not transformed with Silhouette as it may contain I/O

functions that need to write to memory-mapped I/O registers that are only accessible

to privileged store instructions. We also forbid inlining HAL functions into application

code.

Moreover, Silhouette specially handles variable-length arrays on the stack and

alloca() calls with argument values that cannot be statically determined by the

compiler. For these two types of memory allocation, Silhouette adopts the method from

SAFECode [86] and SVA [67] that promotes the allocated data from stack to heap. As

Section 3.6.1 explains, such stack allocations (while rare in C code) can cause stack

register spills, endangering the integrity of the shadow stack.

3.4.1 Shadow Stack

In unprotected embedded systems, programs store return addresses on the stack, leaving

return addresses open to corruption by an adversary. To mitigate such attacks, some

compilers transform code to use shadow stacks. A shadow stack [43] is a second stack,

stored in an isolated region of memory, on which a program saves the return address.

Only the code that saves the return address should be able to write to the shadow stack;

it should be otherwise inaccessible to other store instructions in the program. If the

shadow stack cannot be corrupted by memory safety errors, then return addresses are

not corrupted. Furthermore, if the function epilogue uses the correct return address

stored on the shadow stack, then the function always returns to the correct dynamic call

site.
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Silhouette’s shadow stack transformation pass modifies each function’s prologue

to save the return address on a shadow stack and each function’s epilogue to use the

shadow stack return address on function return. Once the transformation is complete,

the program uses a shadow stack, but the shadow stack is not protected. For that,

Silhouette employs the store hardening pass and the CFI pass.

3.4.2 Protection via Store Hardening

Silhouette leverages the MPU and the intra-address space isolation mechanism de-

scribed in Section 3.3 to efficiently protect the shadow stack. This protection is com-

prised of two parts. First, during compilation, Silhouette’s store hardening pass trans-

forms all store instructions in application code from privileged instructions to equiva-

lent unprivileged store instructions (STRT, STRHT, and STRBT). As discussed previ-

ously, these unprivileged variants always check the MPU’s unprivileged-mode permis-

sion bits. Second, when loading the program, Silhouette instrumentation configures the

MPU so that the shadow stack is readable and writeable in privileged mode but only

readable in unprivileged mode. This ensures that store instructions executed in unprivi-

leged mode and unprivileged stores (STRT, STRHT, and STRBT) executed in privileged

mode cannot modify values on the shadow stack. Together, these mechanisms ensure

shadow stack isolation, even if the entire program is executed in privileged mode.

Store hardening transforms all stores within the application code except for two

cases. First, store hardening does not transform stores used as part of Silhouette’s

shadow stack instrumentation as they must execute as privileged instructions so that

they can write to the shadow stack. The shadow stack pass marks all stores to the

shadow stack with a special flag, making them easily identifiable. Second, store hard-

ening cannot transform atomic stores (Store-Exclusive [21]) because they do not have

unprivileged counterparts. Silhouette utilizes Software Fault Isolation (SFI) [254] to

prevent those stores from writing to the shadow stack region.
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As discussed in Section 3.2, Silhouette does not transform the HAL code; thus, the

stores in the HAL code are left unmodified. This is because the HAL contains hardware

I/O and configuration code that must be able to read and write the System, Device,

and Peripheral memory regions. To prevent attackers from using privileged stores

within the HAL code, Silhouette employs CFI as Section 3.4.3 explains.

3.4.3 Forward Branch Control-Flow Integrity

Shadow stacks protect the integrity of function returns, but memory safety attacks can

still corrupt data used for forward-edge control flow branches, e.g., function pointers.

If left unchecked, these manipulations would allow an attacker to redirect control flow

to anywhere in the program, making it trivial for the attacker to corrupt the shadow

stack with an arbitrary value or to load a return address from an arbitrary location.

Consequently, Silhouette must restrict the possible targets of forward-edges to ensure

return address integrity.

There are two types of forward branches: indirect function calls and forward indi-

rect jumps. For the former, Silhouette uses label-based CFI checks [2, 41] to restrict the

set of branch targets and ensure that the remaining privileged store instructions cannot

be leveraged by an attacker to corrupt the shadow stack. Silhouette-protected systems

use privileged store instructions only in the HAL library and in function prologues to

write the return address to the shadow stack. The HAL library is compiled separately

and has no CFI labels in its code; even coarse-grained CFI ensures that no store instruc-

tions within the HAL library can be exploited via an indirect call (direct calls to HAL

library functions are permitted as they do not require CFI label checks). For a function

call, ARM processors automatically put the return address in the lr register. Silhou-

ette’s shadow stack transformation pass modifies function prologues to store lr to the

shadow stack. Label-based CFI guarantees an indirect function call can only jump to

the beginning of a function, ensuring that attackers cannot use the function prologue to
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write arbitrary values to the shadow stack.

There are three types of constructs in C that may cause a compiler to generate for-

ward indirect jumps: indirect tail function calls, large switch statements, and com-

puted goto statements (“Label as Values” in GNU’s nomenclature [99]). Silhouette’s

CFI forces indirect tail function calls to jump to the beginning of a function. Re-

stricting large switch statements and computed goto statements is implementation-

dependent. We explain how Silhouette handles them in Section 3.5.3.

3.4.4 setjmp() and longjmp() Support

A special case for Silhouette to handle is setjmp() and longjmp() in the C library.

setjmp() saves the current execution context to a memory location specified by its

argument, and longjmp() recovers the saved context from the specified memory

location as if the execution was just returned from a previous call to setjmp(). Calls

to setjmp() and longjmp() can undermine Silhouette’s return addresses integrity

guarantees because longjmp() uses a return address from its jmp buf argument

which could be located in corruptible global, heap, or stack memory. Applications

might also misuse setjmp() and longjmp(), such as calling longjmp() after

the function that called setjmp() with the corresponding jmp buf returns, leading

to undefined behaviors exploitable by attackers. Silhouette modifies the implementation

of setjmp() and longjmp() to support them while maintaining its return address

integrity guarantees.

Specifically, Silhouette reserves part of the protected shadow stack region to store a

map of active jmp buf records in use by the program. Figure 3.2 shows the format of

a map entry; the address of a jmp buf passed to setjmp()/longjmp() serves as

a key, and all callee-saved registers plus sp and lr are values. Algorithms 3.1 and 3.2

depict the design of our custom setjmp() and longjmp(), respectively. When the

application calls setjmp(), instead of saving the execution context to the application-
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Figure 3.2: Format of Silhouette’s jmp buf Records

specified jmp buf, Silhouette’s setjmp() saves it to the map by inserting a new

entry or overriding an existing entry, based on the address of jmp buf. If we are

inserting a new entry and the number of active jmp buf records reaches the map’s

capacity, Silhouette’s setjmp() reports an error and aborts the program; this is not

a practical problem as we expect the program to have only a few jmp bufs. We can

also provide an option for the application developer to specify a desired size of the

map. Our store hardening pass will recognize this safe version of setjmp() and

generate regular stores (instead of unprivileged stores) for it to access the map. Saving

the execution context in the protected region ensures the integrity of saved stack pointer

values and return addresses.

Silhouette’s longjmp() checks if the address of the supplied jmp buf matches

an entry in the map. If no matched entry is found, either the supplied jmp buf

is invalid or the supplied jmp buf has expired due to function returns or a call to

longjmp() on an outer-defined jmp buf (both explained below). In both cases,

execution is aborted. If a matched entry is found, Silhouette’s longjmp() first invali-

dates all entries in the map that have a smaller sp value than that of the matched entry;

these jmp bufs become expired when the control flow is unwound to an outer call site

of setjmp(). The execution context stored in the matched entry is then recovered.

The remaining case is that, when a function that calls setjmp() returns, the
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Algorithm 3.1: Silhouette setjmp()
Input: A jmp buf buf

1 foreach entry e in map do
2 if e.buf == &buf then
3 e.{sp, lr, . . .} ← {sp, lr, . . . };
4 return 0;
5 end
6 end
7 if map.size < map.capacity then
8 Insert a new entry {&buf, sp, lr, . . . } into map;
9 map.size← map.size +1;

10 return 0;
11 else
12 Error(“Map reached its capacity”);
13 end

jmp bufs used in the function and in its callees become obsolete. Silhouette han-

dles this case by inserting code in the epilogue of such functions to invalidate all the

map entries whose sp value is smaller than or equal to the current sp value. This

ensures that future calls to longjmp() do not use obsolete sp and lr values.

3.4.5 Privileged Code Scanner

As Silhouette executes all code within the processor’s privileged mode, Silhouette uses

a code scanner to ensure the application code is free of privileged instructions that

could be used by an attacker to disable Silhouette’s protections. If the scanner detects

such instructions, it presents a message to the application developer warning that the

security guarantees of Silhouette could be violated by the use of such instructions. It

is the application developer’s decision whether to accept the risk or modify the source

code to avoid the use of privileged instructions.

On ARMv7-M [21], there is only one type of privileged instructions that must be

removed: MSR (Move to Special register from Register). One other, CPS (Change Pro-

cessor State), must be rendered safe through hardware configuration. Specifically, the
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Algorithm 3.2: Silhouette longjmp()
Input: A jmp buf buf
Input: An integer val

1 buf entry← null;
2 foreach entry e in map do
3 if e.buf == &buf then
4 buf entry← e;
5 break;
6 end
7 end
8 if buf entry == null then
9 Error(“Invalid jmp buf”);

10 end
11 foreach entry e in map do
12 if e.sp < buf entry.sp then
13 Invalidate e;
14 map.size← map.size −1;
15 end
16 end
17 {sp, lr, . . . } ← buf entry.{sp, lr, . . . };
18 if val == 0 then
19 return 1;
20 else
21 return val;
22 end

MSR instruction can change special register values in ways that can subvert Silhouette.

For example, MPU protections on the shadow stack could be bypassed by changing

the stack pointer registers (MSP or PSP on ARMv7-M) to move the shadow stack to

a memory region writeable by unprivileged code. The CPS instruction can change the

execution priority, and the MPU will elide protection checks if the current execution

priority is less than 0 and the HFNMIENA bit in the MPU Control Register (MPU CTRL)

is set to 0 [21]. However, Silhouette disables this feature by setting the HFNMIENA bit

to 1, rendering the CPS instruction safe. A third type, MRS (Move to Register from

Special register), can read special registers [21] but cannot be used to compromise the

integrity of Silhouette.
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Finally, as Silhouette provides control-flow integrity, an attacker cannot use mis-

aligned instruction sequences to execute unintended instructions [2]. Therefore, a lin-

ear scan of the assembly is sufficient for ensuring that the application code is free of

dangerous privileged instructions.

3.4.6 Improvements with Silhouette-Invert

Swapping a privileged store with a single equivalent unprivileged store introduces no

overhead. However, as Section 3.5.2 explains, Silhouette must add additional instruc-

tions when converting some privileged stores to unprivileged stores. For example,

transforming floating-point stores and stores with a large offset operand adds time and

space overhead.

However, we can minimize store hardening overhead by inverting the roles of hard-

ware privilege modes. Specifically, if we can invert the permissions of the shadow

stack region to disallow writes from privileged stores but allow writes from unprivi-

leged stores, then we can leave the majority of store instructions unmodified. In other

words, this design would allow all stores (except shadow stack writes) to remain un-

modified, thereby incurring negligible space and time overhead for most programs. We

refer to this variant as Silhouette-Invert.

Silhouette-Invert is similar in design to ILDI [56] which uses the Privileged Access

Never (PAN) feature on ARMv8-A [22, 39] to prevent privileged stores from writing to

user-space memory. Unfortunately, the ARMv7-M architecture lacks PAN support and

provides no way of configuring memory to be writeable by unprivileged stores but inac-

cessible to privileged stores [21]. We therefore reason about the potential performance

benefits using a prototype that mimics the overhead of a real Silhouette-Invert imple-

mentation. Section 3.5.5 discusses two potential hardware extensions to ARMv7-M to

enable development of Silhouette-Invert.
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3.4.7 Hardware Configuration Protection

As all code on our target system resides within a single address space and, further, as

Silhouette executes application code in privileged mode to avoid costly context switch-

ing, we must use both the code transformations described above and load-time hardware

configurations to ensure that memory safety errors cannot be used to reconfigure priv-

ileged hardware state. For example, such state would include the interrupt vector table

and memory-mapped MPU configuration registers; on ARMv7-M, most of this priv-

ileged hardware state is mapped into the physical address space and can be modified

using store instructions [21]. If application code can write to these physical memory

locations, an adversary can reconfigure the MPU to make the shadow stack writable or

can violate CFI by changing the address of an interrupt handler and then waiting for

an interrupt to occur. Therefore, Silhouette makes sure that the MPU prevents these

memory-mapped registers from being writable by unprivileged store instructions. As

Section 2.1.3 explains, the ARMv7-M MPU is automatically configured this way.

3.5 Implementation

We implemented Silhouette by adding three new MachineFunction passes to the

LLVM 9.0 compiler [142]: one that transforms the prologue and epilogue code to use

a shadow stack, one that inserts CFI checks on all computed branches (except those

used for returns), and one that transforms stores into STRT, STRHT, or STRBT instruc-

tion sequences. Silhouette runs our new passes after instruction selection and register

allocation so that subsequent code generator passes do not modify our instrumenta-

tion. Finally, we implemented the privileged code scanner using a Bourne Shell script

which disassembles the final executable binary and searches for privileged instructions.

Writing a Bourne shell script made it easier to analyze code within inline assembly

statements; such statements are translated into strings within special instructions in the

LLVM code generator. We measured the size of the Silhouette passes and code scanner
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mov.w ip, #0xe00000 ; ip is the intra-procedure scratch register
str.w lr, [sp, ip] ; Save lr to mem[sp + ip]

Figure 3.3: Instructions to Update the Silhouette Shadow Stack

using SLOCCount 2.26. Silhouette adds 2,416 source lines of C++ code to the code

generator; the code scanner is 95 source lines of Bourne shell code.

3.5.1 Shadow Stack Transformation

Our prototype implements a parallel shadow stack [77] which mirrors the size and lay-

out of the normal stack. By using parallel shadow stacks, the top of the shadow stack

is always a constant offset from the regular stack pointer. Figure 3.3 shows the two in-

structions inserted by Silhouette in a function’s prologue for our STM32F469 Discov-

ery board [234, 239]. The constant moved to the ip register may vary across different

devices based on the available address space. Note that the transformed prologue writes

the return address into both the regular stack and the shadow stack.

Silhouette transforms the function epilogue to load the saved return address to either

pc (program counter) or lr, depending on the instructions used in the original epilogue

code. The instructions added by the shadow stack transformation are marked with a

special flag so that a later pass (namely, the store hardening pass) knows that these

instructions implement the shadow stack functionality.

Silhouette also handles epilogue code within IT blocks [21]. An IT (short for If-

Then) instruction begins a block of up to 4 instructions called an IT block. An IT block

has a condition code and a mask to control the conditional execution of the instructions

contained within the block. A compiler might generate an IT block for epilogue code

if a function contains a conditional branch and one of the branch targets contains a

return statement. For each such epilogue IT block, Silhouette removes the IT in-

struction, applies the epilogue transformation, and inserts new IT instruction(s) with

the correct condition code and mask to cover the new epilogue code.
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3.5.2 Store Hardening

Silhouette transforms all possible variations of regular stores to one of the three un-

privileged store instructions: STRT (store word), STRHT (store halfword), and STRBT

(store byte) [21]. When possible, Silhouette swaps the normal store with the equivalent

unprivileged store. However, some store instructions are not amenable to a direct one-

to-one translation. For example, some store instructions use an offset operand larger

than the offset operand supported by the unprivileged store instructions; Silhouette will

insert additional instructions to compute the target address in a register so that the un-

privileged store instructions can be used. ARMv7-M also supports instructions that

store multiple values to memory [21]; Silhouette converts such instructions to multiple

unprivileged store instructions. For Store-Exclusive instructions [21], Silhouette adds

two BIC (bit-masking) instructions before the atomic store to force the address operand

to point into the global, heap, or regular stack regions.

Silhouette handles store instructions within IT [21] blocks in a similar way to how

it handles epilogue code within IT blocks. If an IT block has at least one store in-

struction, Silhouette removes the IT instruction, applies store hardening for each store

instruction within the IT block, and adds new IT instruction(s) to cover newly in-

serted instructions as well as original non-store instructions within the old IT block.

This guarantees store hardening generates semantically equivalent instructions for ev-

ery store in an IT block.

Silhouette sometimes adds code that must use a scratch register. For example,

when transforming floating-point store instructions, Silhouette must create code that

moves the value from a floating-point register to one or two integer registers because

unprivileged store instructions cannot access floating-point registers. Our prototype

uses LLVM’s LivePhysRegs class [166] to find free registers to avoid adding reg-

ister spill code. This optimization significantly reduces store hardening’s performance

overhead on certain programs; for example, we observed a reduction from 39% to 4.9%
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for a loop benchmark. Section 3.7.3 presents detailed data of our experiments.

Comparison with uXOM’s Store Transformation There are two major differ-

ences between Silhouette’s implementation of store hardening and the corresponding

store transformation of uXOM [141]. First, Silhouette performs store hardening near

the end of LLVM’s backend pass pipeline (after register allocation and right before

the ARMConstantIslandPass [162]). We made this choice to avoid situations

wherein later compiler passes (potentially added by other developers) either gener-

ate new privileged stores or transform instructions inserted by Silhouette’s shadow

stack, store hardening, and CFI passes. As mentioned above, Silhouette avoids register

spilling by utilizing LLVM’s LivePhysRegs class to find free registers. In contrast,

uXOM transforms store instructions prior to register allocation to avoid searching for

scratch registers. As a consequence, subsequent passes, such as prologue/epilogue in-

sertion or passes added by future developers, must ensure that they do not add any new

privileged store instructions. Second, our store hardening pass transforms all privi-

leged stores (sans Store-Exclusives) while uXOM optimizes its transformation by elid-

ing transformation of certain stores (such as those whose base register is sp) when it is

safe to do so. The uXOM optimization is safe when used with uXOM’s security policy

but may not be safe if store hardening is used to enforce a new security policy that does

not protect the integrity of the stack pointer register. Implementing store hardening and

optimization in a single pass makes the compiler efficient. However, by adhering to the

Separation of Concerns principle in compiler implementation [25], our code is more

easily reused: to use store hardening for a new security policy, one simply changes the

compiler to run our store hardening pass and then implements any optimization passes

that are specific to that security policy.
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Code Patterns How Silhouette Handles Them

Large switch statements Compiled to bounds-checked TBB or TBH instructions
Indirect tail function calls Restricted by CFI
Computed goto statements Transformed to switch statements

Table 3.1: C Code Patterns That May Be Compiled to Indirect Jumps

3.5.3 Forward Branch Control-Flow Integrity

Indirect Function Calls With link-time optimization enabled, Silhouette inserts a

CFI label at the beginning of every address-taken function. Silhouette also inserts a

check before each indirect call to ensure that the control flow transfers to a target with

a valid label.

Our prototype uses coarse-grained CFI checks, i.e., the prototype uses a single label

for all address-taken functions. We picked 0x4600 for the CFI label as it encodes the

Thumb instruction mov r0, r0 and therefore has no side effect when executed. With

the addition of static call graph analysis [143], it is possible to extend the Silhouette

prototype to use multiple labels with no increase in runtime overhead.

Forward Indirect Jumps Table 3.1 summarizes the three types of constructs of C

that may cause a compiler to generate a forward indirect jump and how they are han-

dled by Silhouette. The compiler may insert indirect jumps to implement large switch

statements. LLVM lowers large switch statements into PC-relative jump-table jumps

using TBB or TBH instructions [21]; for each such instruction, LLVM places the jump

table immediately after the instruction and inserts a bounds check on the register hold-

ing the jump-table index to ensure that it is within the bounds of the jump table. As

jump-table entries are immutable and point to basic blocks that are valid targets, such

indirect jumps are safe. Tail-call optimization transforms a function call preceding a

return into a jump to the target function. Silhouette’s CFI checks ensure that tail-call

optimized indirect calls jump only to the beginning of a function. The last construct that

can generate indirect jumps is the computed goto statement. Fortunately, LLVM com-
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Figure 3.4: Silhouette’s Address Space and MPU Configuration on STM32F469 Dis-
covery Board

piles computed goto statements into indirectbr IR instructions [165]. Silhouette

uses LLVM’s existing IndirectBrExpandPass [163] to turn indirectbr in-

structions into switch instructions. We can then rely upon LLVM’s existing checks

on switch instructions, described above, to ensure that indirect jumps generated from

switch instructions are safe. In summary, Silhouette guarantees that no indirect jumps

can jump to the middle of another function.

3.5.4 MPU Configuration

Our prototype also includes code that configures the MPU before an application starts.

Figure 3.4 shows the address space and the MPU configuration for each memory re-

gion of a Silhouette-protected system on our STM32F469 Discovery board [234, 239].

Silhouette uses five MPU regions to prevent unprivileged stores from corrupting the

shadow stack, program code, and hardware configuration. First, Silhouette sets the

code region to be readable, executable, and non-writable for both privileged and unpriv-

ileged accesses. No other regions are configured executable; this effectively enforces

W⊕X [200]. Second, Silhouette configures the shadow stack region to be writable only

by privileged code. All other regions of RAM are set to be readable and writable by

both privileged and unprivileged instructions. Our prototype restricts the stack size to

2 MB; this should suffice for programs on embedded devices.4 Note that Silhouette

swaps the normal positions of the stack and the heap to detect shadow stack overflow: a

4The default stack size of Android applications, including both Java code and native code, is only
around 1 MB [12].
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stack overflow will decrement the stack pointer to point to the inaccessible region near

the top of the address space; a trap will occur when the prologue attempts to save the

return address there. An alternative to preventing the overflow is to put an inaccessi-

ble guard region between the stack and the heap; however, it costs extra memory and

an extra MPU configuration region. Finally, Silhouette enables the default background

region which disallows any unprivileged reads and writes to address ranges not cov-

ered by the above MPU regions, preventing unprivileged stores from writing the MPU

configuration registers and the Peripheral, Device, and System regions.

3.5.5 Silhouette-Invert

Our Silhouette-Invert prototype assumes that the hardware supports the hypothetical

inverted-design described in Section 3.4.6, i.e., the MPU can be configured so that the

shadow stack is only writable in unprivileged mode. We briefly propose two designs to

change the hardware to support the memory access permissions required by Silhouette-

Invert.

One option is to use a reserved bit in the Application Program Status Register

(APSR) [21] to support the PAN state mentioned in Section 3.4.6. In ARMv8-A

processors, PAN is controlled by the PAN bit in the Current Program Status Regis-

ter (CPSR) [22]. Currently, 24 bits of APSR are reserved [21] and could be used for

PAN on ARMv7-M.

The second option is to add support to the MPU. In ARMv7-M, the permission

configuration of each MPU region is defined using three Access Permission (AP) bits

in the MPU Region Attribute and Size Register (MPU RASR) [21]. Currently, binary

value 0b100 is reserved, so one could map this reserved value to read and write in

unprivileged mode and no access in privileged mode, providing support to the permis-

sions required by Silhouette-Invert without changing the size of AP or the structure of

MPU RASR.
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In the Silhouette-Invert prototype, the function prologue writes the return address

to the shadow stack using an unprivileged store instruction, and CFI uses regular store

instructions to save registers to the stack during label checks; all other store instructions

remain unchanged. The MPU is also configured so that the shadow stack memory re-

gion is writable in unprivileged mode, and other regions of RAM are accessible only in

privileged mode. As configuring memory regions to be writable in unprivileged mode

only would require a hardware change, the Silhouette-Invert prototype instead config-

ures the shadow stack region to be writable by both unprivileged and privileged stores.

We believe both of the potential hardware changes proposed above would add negligi-

ble performance overhead. Section 3.7 shows that Silhouette-Invert reduces overhead

considerably.

3.5.6 Implementation Limitations

Our Silhouette and Silhouette-Invert prototypes share a few limitations. First, they cur-

rently do not transform inline assembly code. The LLVM code generator represents

inline assembly code within a C source file as a special “inline asm” instruction with

a string containing the assembly code. Consequently, inline assembly code is fed di-

rectly into the assembler without being transformed by MachineFunction passes.

Fortunately, hand-written inline assembly code in applications is rare; our benchmarks

contain no inline assembly code. Future implementations could implement store hard-

ening within the assembler which would harden stores in both compiler-generated and

hand-written assembly code. Second, our current prototypes do not instrument the

startup code or the newlib library [184]. These libraries are provided with our de-

velopment board as pre-compiled native code. In principle, a developer can recompile

the startup files and newlib from source code to add Silhouette and Silhouette-Invert

protections. Third, we have not implemented the “stack-to-heap” promotion (discussed

in Section 3.4) for dynamically-sized stack data. Only one of our benchmarks allocates

a variable-length local array; we manually rewrote the code to allocate the variable on
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the heap. Lastly, we opted not to implement Silhouette’s setjmp() and longjmp()

support, described in Section 3.4.4, as none of our benchmarks use setjmp() and

longjmp().

3.6 Security Analysis

This section explains how Silhouette hinders control-flow hijacking attacks. We first

discuss how Silhouette’s protected shadow stack, combined with the defenses on for-

ward control-flow, ensure that each return instruction transfers control back to its dy-

namic caller. We then explain why these security mechanisms provide strong protection

against control-flow hijacking attacks.

3.6.1 Integrity of Return Addresses

Silhouette ensures that functions return control flow to their dynamic callers when ex-

ecuting a return instruction by enforcing three invariants at run-time:

Invariant 3.1. A function stores the caller’s return address on the shadow stack, or

never spills the return address in register lr to memory.

Invariant 3.2. Return addresses stored on the shadow stack cannot be corrupted.

Invariant 3.3. If a function stores the return address on the shadow stack, its epilogue

will always retrieve the return address from the correct memory location in the shadow

stack, i.e., the location into which its prologue stored the return address.

As the prologue and epilogue code use the stack pointer to compute the shadow

stack pointer, maintaining all the invariants requires maintaining the integrity of the

stack pointer. Invariants 3.1 and 3.3 require the function prologue and epilogue to keep

the stack pointer within the stack region. Additionally, for Invariant 3.3, Silhouette

must ensure that the stack pointer is restored to the correct location on the stack to
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ensure that the shadow stack pointer is pointing to the correct return address. For In-

variant 3.2, besides being inside the stack region, any function call’s stack pointer must

be guaranteed to stay lower than its frame pointer; otherwise, the valid return addresses

on the shadow stack may be corrupted.

To maintain the invariants, Silhouette prevents programs from loading corrupted

values into the stack pointer by ensuring that application code never spills/reloads the

stack pointer to/from memory. In particular, functions that have dynamically-sized

stack allocations or that allocate stack memory within a loop may trigger the code

generator to spill and reload the stack pointer. As Section 3.4 explains, Silhouette

promotes such problematic alloca instructions into heap allocations, ensuring that

all functions have constant-sized stack frames and therefore have no need to spill the

stack pointer.

The next issue is ensuring that the remaining fixed-size stack memory allocations

and deallocations cannot be used to violate the invariants. To prevent stack overflow,

Silhouette positions the regular stack at the bottom of the address space as Figure 3.4

shows. If a stack overflow occurs, the stack pointer will point to a location near the top

of the address space; if any function prologue subsequently executes, it will attempt to

write the return address into an inaccessible location, causing a trap that will allow the

TCB to respond to the overflow.

To ensure that stack deallocation does not cause stack underflow, Silhouette en-

sures that deallocation frees the same amount of stack memory that was allocated in

the function prologue. Several Silhouette features ensure this. First, the checks on for-

ward control flow ensure that control is never transferred into the middle of a function

(as Section 3.5.3 describes). Second, if Invariants 3.1, 3.2, and 3.3 hold prior to the

underflow, then the shadow stack ensures that a function returns to the correct caller,

preventing mismatched prologues and epilogues. Finally, since the function prologue

dominates all code in the function, and since the function epilogue post-dominates all

code in the function, the epilogue will always deallocate the memory allocated in the
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prologue.

In summary, Silhouette maintains Invariants 3.1 and 3.3 by ensuring that the stack

pointer stays within the stack region during the function prologue and epilogue and that

the epilogue will always deallocate stack memory correctly. Silhouette also ensures that

the stack pointer will always be lower than the frame pointer, maintaining Invariant 3.2.

3.6.2 Reduced Attack Surface

Recent work has shown the importance of protecting return addresses to increase the

precision, and thus strength, of CFI-based defenses [45, 46, 62, 80, 109]. In particular,

without a protected shadow stack or other mechanisms to ensure the integrity of return

addresses, CFI with static labels cannot ensure that a function returns to the correct

caller at runtime; instead, a function is typically allowed to return to a set of possible

callers. Attacks against CFI exploit this imprecision.

Most attacks against CFI target programs running on general-purpose systems.

Some attacks exploit features specific to certain platforms, and it is not clear if they

can be ported to attack embedded devices. For example, Conti et al. [62] showed

how to corrupt return addresses saved by unprotected context switches on Windows

on 32-bit x86 processors. However, many attacks involve generic code patterns

that can likely be adapted to attack CFI-protected programs on embedded systems.

We now discuss generic control-flow hijacking code patterns discovered by recent

work [45, 46, 80, 109]. As we discuss below, Silhouette is robust against these attacks.

Göktaş et al. [109] evaluated the effectiveness of coarse-grained CFI that allows

two types of gadgets: Call-site (CS) gadgets that start after a function call and end

with a return, and Entry-point (EP) gadgets that start at the beginning of a function

and end with any indirect control transfer. CS gadgets are a result of corrupted return

addresses, and EP gadgets stem from corrupted function pointers or indirect jumps if

the CFI policy does not distinguish indirect calls and jumps. The authors proposed four
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methods of chaining the gadgets: CS to CS (i.e., return-oriented programming), EP to

EP (call-oriented programming), EP to CS, and CS to EP. Three of these four methods

require a corrupted return address. Their proof-of-concept exploit uses both types of

the gadgets. Similarly, Carlini et al. [45] and Davi et al. [80] showed how to chain call-

preceded gadgets (instruction sequences starting right after a call instruction) to launch

code-reuse attacks against CFI. As Silhouette prevents return address corruption, only

attacks that chain EP gadgets are possible.

Carlini et al. [46] also demonstrated the weaknesses of CFI and emphasized the

importance of a shadow stack. They proposed a Basic Exploitation Test (BET)—i.e.,

a minimal program for demonstrating vulnerabilities—to quickly test the effectiveness

of a CFI policy. Their work identifies five dangerous gadgets that allow arbitrary reads,

writes, and function calls in the BET under a coarse-grained CFI policy. However,

all of these are call-preceded gadgets, and Silhouette’s protected shadow stack stymies

call-preceded gadgets.

Additionally, Carlini et al. [46] demonstrated a fundamental limitation of CFI

defenses when used without another mechanism to provide return address integrity.

Specifically, they showed that even fully-precise static CFI cannot completely prevent

control-flow hijacking attacks, concluding that, regardless of the precision of the com-

puted call graph, protection for return addresses is needed.

In summary, with the protection of Silhouette, control-flow hijacking attacks are

restricted to only call-oriented programming. Although there are still potential dan-

gers [96], Silhouette significantly reduces the control-flow hijacking attack surface for

embedded programs.

3.7 Experimental Results

Below, we evaluate the performance and code size overhead of our Silhouette and

Silhouette-Invert prototypes. We also compare Silhouette to an orthogonal approach,
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SSFI, which uses software fault isolation (SFI), instead of store hardening, to iso-

late the shadow stack from application code. In summary, we find that Silhouette

and Silhouette-Invert incur low runtime overhead (1.3% and 0.3% on average for

CoreMark-Pro, respectively) and small increases in code size (8.9% and 2.2%, respec-

tively). In addition, we compare Silhouette with the two most closely related defenses,

RECFISH [255] and µRAI [9]; they both protect return addresses of programs running

on microcontroller-based embedded devices but leverage different mechanisms than

Silhouette.

3.7.1 Methodology

We evaluated Silhouette on an STM32F469 Discovery board [234, 239] that can run at

speeds up to 180 MHz. The board encapsulates an ARM Cortex-M4 processor [20] and

has 384 KB of SRAM (a 320 KB main SRAM region and a 64 KB CCM RAM region),

16 MB of SDRAM, and 2 MB of flash memory. As some of our benchmarks allocate

megabytes of memory, we use the SDRAM as the main memory for all programs;

global data remains in the main SRAM region.

We used unmodified Clang 9.0 to compile all benchmark programs as the baseline,

and we compare this baseline with programs compiled by Silhouette, Silhouette-Invert,

and SSFI for performance and code size overhead. We also measured the overhead in-

curred for each benchmark program when transformed with only the shadow stack (SS)

pass, only the store hardening (SH) pass, and only the CFI pass. For all experiments,

we used the standard -O3 optimizations, and we used LLVM’s lld linker with the

-flto option to do link-time optimization.

As Silhouette-Invert requires a hardware enhancement for a fully-functional imple-

mentation, the numbers we present here are an estimate of Silhouette-Invert’s perfor-

mance. However, as Sections 3.4.6 and 3.5.5 discuss, the hardware changes needed by

Silhouette-Invert should have minor impact on execution time and no impact on code
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size. Therefore, our evaluation of the Silhouette-Invert prototype should provide an

accurate estimate of its performance and memory overhead.

We discuss the implementation of SSFI and compare it with Silhouette and

Silhouette-Invert in Section 3.7.5.

3.7.2 Benchmarks

We chose two benchmark suites for our evaluation: CoreMark-Pro [92] and

BEEBS [195]. The former is the de facto industry standard benchmark for embed-

ded processors; the latter has been used in the evaluation of other embedded de-

fenses [59, 141, 255].

CoreMark-Pro The CoreMark-Pro [92] benchmark suite is designed for both low-

end microcontrollers and high-end multicore processors. It includes five integer work-

loads (including JPEG compression and SHA-256) and four floating-point workloads

such as fast Fourier transform (FFT) and a neural network benchmark. One of the

workloads is a more memory-intense version of the original CoreMark benchmark [91];

note, ARM recommends the use of the original CoreMark benchmark to test Cortex-

M processors [18]. We used commit d15927b of the CoreMark-Pro repository on

GitHub.

The execution time of CoreMark-Pro is reported by benchmarks themselves, which

is by calling HAL GetTick() [237] to mark the start and the end of benchmark work-

load execution and printing out the time difference in milliseconds. We added code be-

fore the main function starts to initialize the HAL, set up the clock speed, configure the

MPU, and establish a serial output. We run each CoreMark-Pro benchmark in different

number of iterations so that the baseline execution time is between 5 to 500 seconds.

BEEBS The BEEBS benchmark suite [195] is designed for measuring the energy

consumption of embedded devices. However, it is also useful for evaluating perfor-
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mance and code size overhead because it includes a wide range of programs, including

a benchmark based on the Advanced Encryption Standard (AES), integer and floating-

point matrix multiplications, and an advanced sorting algorithm.

The major drawback of BEEBS is that many of its programs either are too small

or process too small inputs, resulting in insufficient execution time. For example,

fibcall is intended to compute the 30th Fibonacci number, but Clang computes the

result during compilation and returns a constant directly. To account for this issue, we

exclude programs with a baseline execution time of less than one second with 10,240 it-

erations. We also exclude mergesort because it failed the verify benchmark()

check when compiled with unmodified Clang. For all the other programs, all of our

transformed versions passed this function, if it was implemented. We used commit

049ded9 of the BEEBS repository on GitHub.

To record the execution time of an individual BEEBS benchmark, we

wrapped 10,240 iterations of benchmark workload execution with calls to

HAL GetTick() [237] and added code to print out the time difference in millisec-

onds. We also did the same initialization sequence for each BEEBS benchmark as we

did for CoreMark-Pro.

3.7.3 Runtime Overhead

Tables 3.2 and 3.3 show the performance overhead that Silhouette and Silhouette-Invert

induce on CoreMark-Pro and BEEBS, respectively; overhead is expressed as execu-

tion time normalized to the baseline. The SS column shows the overhead of just the

shadow stack transformation, SH shows the overhead induced when only store harden-

ing is performed, and CFI shows the overhead of the CFI checks on forward branches.

The Silhouette and Invert columns show the overhead of the complete Silhouette and

Silhouette-Invert prototypes, respectively. The SSFI column denotes overhead incurred

by a version of Silhouette that uses software fault isolation (SFI) in place of store hard-
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Baseline SS SH CFI Silhouette Invert SSFI
(ms) (×) (×) (×) (×) (×) (×)

cjpeg-rose7-preset 12,765 1.002 1.004 1.001 1.006 1.003 1.041
core 137,385 1.013 1.002 1.000 1.017 1.015 1.024
linear alg-mid-100x100-sp 18,278 1.000 1.010 1.000 1.010 1.000 1.015
loops-all-mid-10k-sp 35,241 1.000 1.049 1.000 1.049 1.000 1.016
nnet test 222,461 1.000 1.013 1.000 1.013 1.000 1.023
parser-125k 9,985 1.004 1.001 1.001 1.005 1.004 1.009
radix2-big-64k 17,270 1.000 1.007 1.000 1.007 1.000 1.019
sha-test 40,725 1.002 1.005 0.999 1.007 1.005 1.046
zip-test 19,955 1.000 1.000 1.000 1.001 1.000 1.006

Min 9,985 1.000 1.000 0.999 1.001 1.000 1.006
Max 222,461 1.013 1.049 1.001 1.049 1.015 1.046
Geomean — 1.002 1.010 1.000 1.013 1.003 1.022

Table 3.2: Silhouette’s Performance Overhead on CoreMark-Pro (Lower is Better)

ening; Section 3.7.5 describes that experiment in more detail.

Silhouette Performance As Tables 3.2 and 3.3 show, Silhouette incurs a geomet-

ric mean overhead of only 1.3% on CoreMark-Pro and 3.4% on BEEBS. The highest

overhead is 4.9% from CoreMark-Pro’s loops benchmark and 24.8% from BEEBS’s

bubblesort benchmark. The bubblesort benchmark exhibits high overhead

because it spends most of its execution in a small loop with frequent stores; to pro-

mote these stores, Silhouette adds instructions to the loop that compute the target ad-

dress. Another BEEBS program with high overhead is levenshtein. The reason

is that one of its functions has a variable-length array on the stack and that func-

tion is called in a loop; Silhouette promotes the stack allocation to the heap with

malloc() and free(). Without this promotion, Silhouette incurs 2.2% overhead

on levenshtein. Nearly all (8 of 9) CoreMark-Pro benchmarks slow down by less

than 2%, and 5 programs have less than 1% overhead. For BEEBS, 24 of the 29 pro-

grams slow down by less than 5%; 16 programs have overhead less than 1%. Tables 3.2

and 3.3 also show that the primary source of the overhead is typically store hardening,

though for some programs (e.g., core and sglib-rbtree) the shadow stack in-

duces more overhead due to extensive function calls. CFI overhead is usually negligible
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Baseline SS SH CFI Silhouette Invert SSFI
(ms) (×) (×) (×) (×) (×) (×)

bubblesort 2,755 1.001 1.247 1.000 1.248 1.000 1.510
ctl-string 1,393 1.015 1.011 0.999 1.027 1.016 1.035
cubic 28,657 1.002 1.002 1.000 1.002 1.001 1.005
dijkstra 40,580 1.002 1.001 1.000 1.003 1.002 1.117
edn 2,677 1.000 1.004 1.000 1.004 1.000 1.058
fasta 16,274 1.000 1.000 1.000 1.000 1.000 1.001
fir 16,418 1.000 1.000 1.000 1.000 1.000 1.021
frac 8,846 1.000 1.003 1.000 1.000 1.000 1.009
huffbench 46,129 1.000 1.005 1.000 1.005 1.000 1.017
levenshtein 7,835 1.005 1.019 1.000 1.207 1.186 1.248
matmult-int 5,901 1.000 1.011 1.000 1.012 1.000 1.048
nbody 124,578 1.000 0.997 1.000 0.997 1.000 1.003
ndes 1,938 1.010 1.008 1.000 1.016 1.011 1.039
nettle-aes 7,030 1.000 1.003 1.000 1.003 1.000 1.111
picojpeg 43,010 1.037 1.057 0.997 1.098 1.037 1.380
qrduino 43,564 1.000 1.036 1.000 1.036 1.000 1.072
rijndael 78,849 1.001 1.008 1.000 1.008 1.005 1.146
sglib-dllist 1,327 1.001 1.006 1.000 1.007 1.001 1.268
sglib-listinsertsort 1,359 1.001 1.000 1.000 1.001 1.001 1.054
sglib-listsort 1,058 1.001 0.999 1.000 1.000 1.001 1.233
sglib-queue 2,135 1.000 1.029 1.000 1.030 1.000 1.122
sglib-rbtree 7,802 1.092 1.017 1.000 1.110 1.093 1.157
slre 4,163 1.031 1.013 1.000 1.045 1.035 1.112
sqrt 55,894 1.000 1.002 1.000 1.006 1.002 1.002
st 20,036 1.002 1.002 1.002 1.002 1.002 1.008
stb perlin 3,168 1.073 1.052 1.000 1.049 1.073 1.045
trio-sscanf 1,335 1.037 1.006 1.022 1.073 1.063 1.115
whetstone 97,960 1.000 1.001 1.000 1.001 1.000 1.002
wikisort 160,307 1.011 1.013 1.016 1.039 1.029 1.180

Min 1,058 1.000 0.997 0.997 0.997 1.000 1.001
Max 160,307 1.092 1.247 1.022 1.248 1.186 1.510
Geomean — 1.011 1.018 1.001 1.034 1.019 1.102

Table 3.3: Silhouette’s Performance Overhead on BEEBS (Lower is Better)
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Baseline SS SH CFI Silhouette Invert SSFI
(bytes) (×) (×) (×) (×) (×) (×)

cjpeg-rose7-preset 98,316 1.017 1.082 1.094 1.193 1.113 1.315
core 51,516 1.006 1.038 1.002 1.046 1.009 1.106
linear alg-mid-100x100-sp 58,772 1.007 1.062 1.002 1.071 1.010 1.135
loops-all-mid-10k-sp 99,156 1.009 1.103 1.002 1.113 1.011 1.225
nnet test 69,580 1.007 1.111 1.002 1.118 1.009 1.226
parser-125k 57,712 1.009 1.038 1.002 1.049 1.012 1.095
radix2-big-64k 58,220 1.007 1.060 1.002 1.069 1.010 1.121
sha-test 52,428 1.005 1.028 1.002 1.036 1.008 1.071
zip-test 82,924 1.009 1.096 1.007 1.112 1.017 1.280

Min 51,516 1.005 1.028 1.002 1.036 1.008 1.071
Max 99,156 1.017 1.111 1.094 1.193 1.113 1.315
Geomean — 1.008 1.068 1.012 1.089 1.022 1.172

Table 3.4: Silhouette’s Code Size Overhead on CoreMark-Pro (Lower is Better)

because our benchmarks seldom use indirect function calls.

Silhouette-Invert Performance Silhouette-Invert greatly decreases the overhead be-

cause it only needs to convert the single privileged store instruction in the prologue of a

function to a unprivileged one and leave all other stores unchanged. It incurs only 0.3%

geometric mean overhead on CoreMark-Pro. Seven of the 9 programs show overhead

less than 0.5%. For BEEBS, the geometric mean overhead is 1.9%. When exclud-

ing the special case of levenshtein, the average overhead is 1.3%. Twenty of the

29 programs slow down by less than 1%. Only three programs, sglib-rbtree,

stb perlin, and trio-sscanf, again, except levenshtein, slow down by

over 5%, and all of them have very frequent function calls.

3.7.4 Code Size Overhead

Small code size is critical for embedded systems with limited memory. We therefore

measured the code size overhead incurred by Silhouette by measuring the code size of

the CoreMark-Pro and BEEBS benchmarks. Tables 3.4 and 3.5 present the baseline

code size and the overhead Silhouette and Silhouette-Invert incurred on CoreMark-Pro



49

Baseline SS SH CFI Silhouette Invert SSFI
(bytes) (×) (×) (×) (×) (×) (×)

bubblesort 30,716 1.004 1.019 1.001 1.023 1.005 1.026
ctl-string 30,976 1.005 1.009 1.001 1.014 1.006 1.021
cubic 43,468 1.003 1.008 1.000 1.011 1.003 1.011
dijkstra 30,900 1.004 1.017 1.001 1.022 1.005 1.041
edn 32,536 1.003 1.010 1.000 1.014 1.004 1.035
fasta 30,600 1.003 1.007 1.001 1.011 1.004 1.014
fir 30,164 1.003 1.005 1.001 1.009 1.004 1.011
frac 30,776 1.004 1.009 1.001 1.014 1.005 1.017
huffbench 34,156 1.003 1.033 1.000 1.036 1.004 1.067
levenshtein 31,408 1.004 1.016 1.001 1.013 1.000 1.025
matmult-int 31,344 1.004 1.009 1.001 1.014 1.005 1.024
nbody 33,636 1.003 1.015 1.000 1.019 1.003 1.019
ndes 33,660 1.004 1.025 1.000 1.030 1.005 1.042
nettle-aes 32,312 1.004 1.010 1.000 1.015 1.005 1.028
picojpeg 45,084 1.006 1.061 1.000 1.068 1.008 1.201
qrduino 46,108 1.003 1.058 1.000 1.062 1.004 1.125
rijndael 39,268 1.003 1.025 1.000 1.029 1.004 1.091
sglib-dllist 30,740 1.003 1.008 1.001 1.012 1.004 1.026
sglib-listinsertsort 30,144 1.003 1.005 1.001 1.010 1.004 1.013
sglib-listsort 30,524 1.003 1.007 1.001 1.011 1.004 1.022
sglib-queue 31,272 1.003 1.023 1.001 1.027 1.004 1.070
sglib-rbtree 30,748 1.006 1.012 1.001 1.019 1.007 1.032
slre 33,420 1.005 1.015 1.000 1.020 1.006 1.042
sqrt 30,428 1.003 1.006 1.001 1.010 1.004 1.009
st 35,300 1.003 1.014 1.001 1.017 1.004 1.023
stb perlin 31,124 1.004 1.010 1.001 1.014 1.005 1.010
trio-sscanf 35,468 1.005 1.030 1.013 1.048 1.019 1.079
whetstone 40,984 1.003 1.010 1.000 1.013 1.004 1.019
wikisort 40,108 1.005 1.053 1.001 1.060 1.007 1.156

Min 30,144 1.003 1.005 1.000 1.009 1.000 1.009
Max 46,108 1.006 1.061 1.013 1.068 1.019 1.201
Geomean — 1.004 1.018 1.001 1.023 1.005 1.044

Table 3.5: Silhouette’s Code Size Overhead on BEEBS (Lower is Better)
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and BEEBS, respectively. In summary, Silhouette incurs a geometric mean of 8.9% and

2.3% code size overhead on CoreMark-Pro and BEEBS, respectively.

For Silhouette, most of the code size overhead comes from store hardening. As

Section 3.5.2 explains, Silhouette transforms some regular store instructions into a se-

quence of multiple instructions. Floating-point stores and stores that write multiple reg-

isters to contiguous memory locations bloat the code size most. In BEEBS, picojpeg

incurs the highest code size overhead because an unrolled loop contains many such

store instructions, and the function that contains the loop is inlined multiple times. For

Silhouette-Invert, because it leaves nearly all stores unchanged, its code size overhead

is only 2.2% on CoreMark-Pro and 0.5% on BEEBS.

3.7.5 Store Hardening versus SFI

An alternative to using store hardening to protect the shadow stack is to use software

fault isolation (SFI) [254]. To compare the performance and code size overhead of

store hardening against SFI, we built a system that provides the same protections as

Silhouette but that uses SFI in place of store hardening. We dub this system Silhouette-

SFI (SSFI). Our SFI pass instruments all store instructions within a program other than

those introduced by the shadow stack pass and those in the HAL. Specifically, our SSFI

prototype adds the same BIC [21] (bit-masking) instructions as what Silhouette does

for Store-Exclusives (discussed in Section 3.5.2) before each store to restrict them from

writing to the shadow stack.

SSFI incurs much higher performance and code size overhead compared to Silhou-

ette. On CoreMark-Pro, SSFI incurs a geometric mean of 2.2% performance overhead,

nearly doubling Silhouette’s average overhead of 1.3%; on BEEBS, SSFI slows down

programs by 10.2%, three times of Silhouette’s 3.4%. Only on one program, the loops

benchmark in CoreMark-Pro, SSFI performs better than Silhouette. For code size,

SSFI incurs an average of 17.2% overhead on CoreMark-Pro and 4.4% on BEEBS; the
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highest overhead is 31.5% and 20.1%, respectively, while on Silhouette it is 19.3% and

6.8%. The specific implementation of SFI will vary on different devices due to different

address space mappings, so it is possible to get different overhead on different boards

for the same program. In contrast, Silhouette’s performance overhead on the same pro-

gram should be more predictable across different boards because the instructions added

and replaced by Silhouette remain the same.

3.7.6 Comparison with RECFISH and µRAI

RECFISH [255] and µRAI [9] are both recently published defenses that provide se-

curity guarantees similar to Silhouette but via significantly different techniques. Like

Silhouette, they provide return address integrity coupled with coarse-grained CFI pro-

tections for ARM embedded architectures. As each defense has distinct strengths and

weaknesses, the choice of defense depends on the specific application to be protected.

To compare Silhouette with RECFISH and µRAI more directly and fairly, we also eval-

uated Silhouette with BEEBS and the original CoreMark benchmark using only SRAM

and present their performance numbers.

RECFISH [255], which is designed for real-time systems, runs code in unprivileged

mode and uses supervisor calls to privileged code to update the shadow stack. Due to

frequent context switching between privilege levels, RECFISH incurs higher overhead

than Silhouette or µRAI. For the 24 BEEBS benchmarks that RECFISH and Silhouette

have in common,5 RECFISH incurs a geometric mean of 21% performance overhead,

and approximately 30% on CoreMark whereas Silhouette incurs just 3.6% and 6.7%,

respectively. Unlike the other two defenses, RECFISH patches binaries; no application

source code or changes to the compiler are needed.

µRAI [9] protects return addresses, in part, by encoding them into a single reserved

register and guaranteeing this register is never corrupted. This approach is more com-

5We obtained RECFISH’s detailed performance data on BEEBS via direct correspondence with the
RECFISH authors.
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plicated but requires no protected shadow stack. Consequently, µRAI is very efficient

for most function calls, incurring three to five cycles for each call-return. However,

there are cases, such as calling a function from an uninstrumented library, where µRAI

needs to switch hardware privilege levels to save/load the reserved register to/from a

safe region, which is expensive.

µRAI [9] reports an average of 0.1% performance overhead on CoreMark and five

IoT applications. The µRAI authors observed that one IoT program, FatFs RAM, saw

a 8.5% speedup because their transformation triggered the compiler to perform a special

optimization that was not performed on the baseline code. When accounting for this

optimization, µRAI incurred an overhead of 6.9% on FatFs RAM and 2.6% on average

for all benchmarks. We measured the performance of CoreMark using Silhouette; the

result is 6.7% overhead compared to µRAI’s reported 8.1% [9].

Finally, we observe that Silhouette’s store hardening is a general technique for intra-

address space isolation. Thus, Silhouette can be extended to protect other security-

critical data in memory, which Section 3.8 discusses. In contrast, µRAI only protects

a small amount of data by storing it within a reserved register; its approach cannot

be as easily extended to protect arbitrary amounts of data. µRAI does rely on SFI-

based instrumentation in exception handlers for memory isolation, but our results in

Section 3.7.5 show that store hardening is more efficient than SFI and could therefore

be used to replace SFI in µRAI.

3.8 Extensibility

Although Silhouette focuses on providing control-flow and return address integrity for

bare-metal applications, it can also be extended to other use cases. For example, with

minimal modification, Silhouette can be used to protect other security-critical data in

memory, such as CPI’s sensitive pointer store [140] or the kernel data structures within

an embedded OS like Amazon FreeRTOS [10].
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With moderate modification, Silhouette can also emulate the behavior of running

application code in unprivileged mode on an embedded OS. First, the kernel of the

embedded OS would need to configure the MPU to disable unprivileged write access

to all kernel data. Second, the embedded OS kernel’s scheduler would need to disable

unprivileged write access to memory of background applications. Third, in addition to

store hardening, Silhouette would need to transform loads in the application code into

unprivileged loads in order to protect the confidentiality of OS kernel data structures.

It would also need to ensure that the embedded OS kernel code contains no CFI labels

used by user-space applications. Fourth, the privileged code scanner must be adjusted

to forbid all privileged instructions (as opposed to only those that can be used to by-

pass Silhouette’s protections) in application code, forbid direct function calls to internal

functions of the kernel, and allow privileged instructions in the embedded OS kernel.

Fifth, since the stack pointer of background applications needs to be spilled to memory

during context switch, the embedded OS kernel must protect the stack pointer of ap-

plications from corruption in order to enforce Silhouette’s security guarantee of return

address integrity. One simple solution would be storing application stack pointers to a

kernel data structure not writable by application code. Finally, system calls require no

changes. In ARMv7-M [21], application code calls a system call using the SVC instruc-

tion, which generates a supervisor call exception. A pointer to the exception handler

table (which stores the address of exception handler functions) is stored in a privileged

register within the System region; Silhouette can protect both the System region and

the exception handler table to ensure that the SVC instruction always transfers control

to a valid system call entry point. Also, regardless of current privilege mode, exception

handlers in ARMv7-M, including the supervisor call handler, will execute in privileged

mode and switch the stack pointer to use the kernel stack [21]. Therefore, system calls

require no change for Silhouette to work as intended.
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3.9 Related Work

Control-Flow Hijacking Defenses for Embedded Systems Besides REC-

FISH [255] and µRAI [9], which Section 3.7.6 discusses, there are several other

control-flow hijacking defenses for embedded devices. CaRE [191] uses supervisor

calls and TrustZone-M technology, available on the ARMv8-M [23] architecture but not

on ARMv7-M, to provide coarse-grained CFI and a protected shadow stack. CaRE’s

performance overhead on CoreMark is 513%. SCFP [264] provides fine-grained CFI

by extending the RISC-V architecture. Unlike Silhouette, SCFP is a pure CFI defense

and does not provide a shadow stack. Therefore, it cannot mitigate attacks such as

control-flow bending [46] while Silhouette can, as Section 3.6.2 shows.

Use of Unprivileged Loads/Stores Others [56, 141] have explored the use of ARM’s

unprivileged loads and stores to provide security guarantees; however, their work

differs from Silhouette’s store hardening in both implementation and application.

uXOM [141] transforms regular load instructions to unprivileged ones to implement

execute-only memory on embedded systems. Aside from differences in the provided

security guarantees—i.e., execute-only memory versus control-flow and return address

integrity—these systems differ in how they handle dangerous instructions that could be

manipulated to bypass protections. In particular, uXOM inserts verification routines

before unconverted load/store instructions to ensure that they will not access security-

critical memory regions while Silhouette leverages CFI and other forward branch pro-

tections to prevent unexpected instructions from being executed. ILDI [56] combines

unprivileged loads and stores on the ARMv8-A architecture along with the PAN state

and hyp mode to isolate data within the Linux kernel—the latter two features are not

available on the ARMv7-M systems targeted by Silhouette.

Intra-Address Space Isolation Silhouette protects the shadow stack by leveraging

store hardening. Previous work has explored other methods of intra-address space iso-
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lation which could be used to protect the shadow stack. Our evaluation in Section 3.7.5

compares Silhouette to software fault isolation (SFI) [254], so we focus on other ap-

proaches here.

ARM Mbed µVisor [17], MINION [135], and ACES [60] enforce memory com-

partmentalization on embedded systems using the MPU. They all dynamically recon-

figure the MPU at runtime but target different scenarios; Mbed µVisor and MINION

isolate processes from each other at context switches, and ACES dissects a bare-metal

application at function boundaries for intra-application isolation. As discussed previ-

ously, isolation that requires protection domain switching is poorly-suited to security

instrumentation that requires frequent crossing of the isolation boundaries—such as

Silhouette’s shadow stack accesses.

ARMlock [283] uses ARM domains to place pages into different protection do-

mains; a privileged register controls access to pages belonging to different domains.

ARM domains are only available for CPUs with MMUs [19, 21] and therefore can-

not be used in ARMv7-M systems. Additionally, access to ARM domains can only be

modified in the privileged mode; software running in user-space must context switch to

the privileged mode to make changes.

Information Hiding Given the traditionally high cost of intra-address space isola-

tion, many defenses hide security-critical data by placing it at a randomly chosen ad-

dress. This class of techniques is generally referred to as information hiding. For

example, EPOXY [59] includes a backward-edge control-flow hijacking defense that

draws inspiration from CPI [140]—relying on information hiding to protect security-

critical data stored in memory. Consequently, an adversary with a write-what-where

vulnerability (as assumed in our threat model) can bypass EPOXY protections.

In general, information hiding is unlikely to be a strong defense on embedded sys-

tems as such systems tend to use only a fraction of the address space (and the memory



56

is directly mapped) which limits the entropy attainable.6 For example, our evaluation

board only has 2 MB of memory for code; if each instruction occupies two bytes, ran-

domizing the code segment provides at most 20 bits of entropy. In contrast, Silhouette’s

defenses are effective even if the adversary has full knowledge of the memory layout

and contents.

Memory Safety Memory safety provides strong protection but incurs high overhead.

Solutions using shadow memory [7, 8, 87, 156, 222] may consume too much memory

for embedded systems. Other solutions [84, 86, 129, 183, 215] incur too much perfor-

mance overhead. nesCheck [177] is a memory safety compiler for TinyOS [118] ap-

plications which induces 6.3% performance overhead on average. However, nesCheck

cannot support binary code libraries as it adds additional arguments to functions. Fur-

thermore, nesCheck’s performance relies heavily on static analysis. We believe that,

due to their simplicity, the benchmarks used in the nesCheck evaluation are more

amenable to static analysis than applications for slightly more powerful embedded sys-

tems (such as ours). In contrast, Silhouette’s performance does not depend on static

analysis’s precision.

6Chapter 5 presents a study on the use of randomization on microcontrollers and how to improve the
limited entropy on such embedded systems.
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Chapter 4

Fast Execute-Only Memory for

Embedded Systems

4.1 Introduction

Remote code disclosure attacks threaten computer systems. Remote attackers exploit-

ing buffer overread vulnerabilities [241] can not only steal intellectual property (e.g.,

proprietary application code, for reverse engineering), but also leak code to locate gad-

gets for advanced code reuse attacks [230], thwarting code layout diversification de-

fenses like Address Space Layout Randomization (ASLR) [201]. Embedded Internet-

of-Things (IoT) devices exacerbate the situation; many of these microcontroller-based

systems have the same Internet connectivity as desktops and servers but rarely employ

protections against attacks [127, 216]. Given the ubiquity of these embedded devices in

industrial production and in our lives, making them immune to code disclosure attacks

is crucial.

Recent research [27, 38, 40, 52, 65, 106, 107, 112, 141, 205, 280] implements

execute-only memory (XOM) to defend against code disclosure attacks. Despite be-

ing unable to prevent code pointer leakage from data regions such as heaps and stacks,

XOM enforces memory protection on the code region so that instruction fetching is

allowed but reading or writing instructions as data is disallowed. This simple and ef-
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fective defense, however, is not natively available on low-end microcontrollers. For

example, the ARMv7-M and ARMv8-M architectures used in mainstream devices sup-

port memory protection but not execute-only (XO) permissions [21, 23]. uXOM [141]

implements XOM on ARM embedded systems but incurs significant performance and

code size overhead (7.3% and 15.7%, respectively) as it transforms most load instruc-

tions into special unprivileged load instructions. Given embedded systems’ real-time

constraints and limited memory resources, a practically ideal XOM solution should

have close-to-zero performance penalty and minimal memory overhead.

This chapter presents PicoXOM, a fast and novel XOM system for ARMv7-M and

ARMv8-M devices using a memory protection unit (MPU) and the Data Watchpoint

and Tracing (DWT) unit [21, 23]. PicoXOM uses the MPU to enforce write protection

on code and uses the unique address range matching capability of the DWT unit to

control read access to the code region. On a matched access, the DWT unit generates

a debug monitor exception indicating an illegal code read, while unmatched accesses

execute normally without slowdown. As PicoXOM disallows all read accesses to the

code segment, it includes a minimal compiler change that removes all data embedded

in the code segment.

We built a prototype of PicoXOM and evaluated it on an ARMv7-M board with

two benchmark suites and five real-world embedded applications. Our results show

that PicoXOM adds negligible performance overhead of 0.33% and only has a small

code size increase of 5.89% while providing strong protection against code disclosure

attacks. We open-sourced our prototype at https://github.com/URSec/Pic

oXOM.

To summarize, our contributions are:

• PicoXOM: a novel method of utilizing the ARMv7-M and ARMv8-M debugging

facilities to implement XOM. To the best of our knowledge, this is the first use

of ARM debug features for security purposes.

https://github.com/URSec/PicoXOM
https://github.com/URSec/PicoXOM
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• A prototype implementation of PicoXOM on ARMv7-M.

• An evaluation of PicoXOM’s performance and code size impact on the BEEBS

benchmark suite, the CoreMark-Pro benchmark suite, and five real-world embed-

ded applications, showing that PicoXOM only incurs 0.33% run-time overhead

and 5.89% code size overhead.

The rest of the chapter is organized as follows. Section 4.2 describes our threat

model and assumptions. Sections 4.3 and 4.4 present the design and implementation

of PicoXOM, respectively. Section 4.5 reports on our evaluation of PicoXOM, and

Section 4.6 discusses related work.

4.2 Threat Model and System Assumptions

We assume a buggy but unmalicious application running on an embedded device with

memory safety vulnerabilities that allow a remote attacker to read or write arbitrary

memory locations. The attacker wants to either steal proprietary application code for

purposes like reverse engineering or learn the application code layout in order to launch

code reuse attacks such as Return-into-libc [248] and Return-Oriented Programming

(ROP) [213] attacks. Physical and offline attacks are out of scope as we believe such

attacks can be stopped by orthogonal defenses [138, 216]. Our threat model also as-

sumes the application code and data is diversified, using techniques such as those in

EPOXY [59]. Therefore, remotely tricking the buggy application into reading its code

content becomes a reasonable choice for the attacker.

We assume that the target embedded device supports MPU and DWT with enough

configurable MPU regions and DWT comparators. We assume that the device is run-

ning a single bare-metal application statically linked with libraries, boot sequences,

and exception handlers. The application is assumed to run in privileged mode, as Sec-
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Figure 4.1: PicoXOM Workflow (PicoXOM Components Shown in Blue)

tion 2.1.1 dictates. For ARMv8-M devices with TrustZone-M, the application is as-

sumed to reside in the non-secure world, while software in the secure world is trusted.

4.3 Design

Figure 4.1 shows PicoXOM’s overall design. PicoXOM consists of three components

that together implement a strong and efficient XOM on ARM embedded devices. First,

PicoXOM uses a specially-configured DWT configuration to detect read accesses to

program code. Second, it utilizes a special MPU configuration that prevents write ac-

cess to the code region and prevents writeable memory from being executable. Third,

it employs a small change to the LLVM compiler [142] to eliminate constant data em-

bedded within the code region.

To use PicoXOM, embedded application developers merely compile their code with

the PicoXOM compiler and install it on their embedded ARM device. On boot, the Pi-

coXOM run-time configures MPU regions and DWT comparators using PicoXOM’s

MPU and DWT configurations and then passes control to the compiled embedded soft-

ware.
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4.3.1 W⊕X with MPU

PicoXOM requires that memory either be writeable or executable but not both i.e., the

W⊕X policy [200]; otherwise, an attacker could simply inject code or overwrite code

to achieve arbitrary code execution. To enforce W⊕X, PicoXOM configures the MPU

regions at device boot time so that the code region is readable and executable, read-

only data is read-only, and RAM regions are readable and writable. Note that the MPU

cannot configure memory to be executable but unreadable; the MPU can configure a

memory region as executable only if it is also configured as readable [21, 23].

PicoXOM runs application code in privileged mode and configures a background

MPU region to allow read and write access to the remainder of the address space such

as peripherals. This, however, leaves critical memory-mapped system registers in the

PPB (such as MPU configuration registers and VTOR) open to modifications, which

can be leveraged by an attacker to turn off MPU protections or, even worse, implant a

custom exception handler. Section 4.3.2 discusses how PicoXOM prevents such cases.

4.3.2 R⊕X with DWT

PicoXOM leverages ARM’s DWT comparators to watch over the whole code region

for read accesses. As Section 2.1.4 states, each (pair) of DWT comparators available

on an ARM microcontroller can be configured to generate a debug monitor exception

when a memory access of a specified type to an address within a specified range occurs.

PicoXOM therefore uses one (pair) of the available DWT comparators as follows:

1. At device boot time, PicoXOM configures a DWT comparator register (say

DWT COMP<n>) to hold the lower bound of the code region.

2. PicoXOM then sets the address-matching range by either writing the upper bound

of the code region to the next DWT comparator register DWT COMP<n+1> (for
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ARMv8-M) or writing the correct mask to the corresponding DWT mask register

DWT MASK<n> (for ARMv7-M).

3. PicoXOM enables the DWT comparator (pair) by configuring the DWT func-

tion register DWT FUNC<n> for data address reads. For ARMv8-M devices,

DWT FUNC<n+1> is also configured in order to form address range matching.

4. Finally, PicoXOM enables the debug monitor exception by setting the MON EN

bit (bit 16) of the Debug Exception and Monitor Control Register DEMCR.

With a DWT comparator (pair) set up for monitoring read accesses to the code re-

gion, R⊕X is effectively enforced. However, as Section 4.3.1 stated, the DWT registers

and DEMCR are also memory-mapped system registers which could be modified by vul-

nerable application code. An attacker could leverage a buffer overflow vulnerability to

reconfigure the debug registers to neutralize PicoXOM.

We can address the issue in two ways. One approach is to break the assumption

that PicoXOM runs everything in privileged mode. As code running in unprivileged

mode has no access to the PPB region regardless of the MPU configuration, the system

registers that PicoXOM must protect (e.g., MPU configuration registers, DWT regis-

ters, DEMCR, and VTOR) are all in the PPB region and therefore inherently safe from

unprivileged tampering. However, this approach requires PicoXOM to implement sys-

tem calls that support privileged operations which application code could previously

perform, incurring expensive context switching between privilege modes. The other

approach is to use extra (pairs of) DWT comparators to prevent writes to critical sys-

tem registers. For example, on ARMv7-M, we can configure one DWT comparator

to write-protect the System Control Block SCB (0xE000ED00 – 0xE000ED8F) and

DEMCR (0xE000EDFC) by setting the lower bound and the size to 0xE000ED00 and

256 bytes, respectively. Since MPU configuration registers are in the SCB, they are pro-

tected as well. DWT registers on ARMv7-M reside in a separate range (0xE0001000

– 0xE0001FFF), so we can use another DWT comparator to write-protect that range.
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ldr r0, =L
...

L: .word 0x12345678

movw r0, #0x5678
movt r0, #0x1234
...

Figure 4.2: Constant Island Removal of a Load Constant

tbb [pc, r2]
L0: .byte (L1 - L0) / 2

.byte (L2 - L0) / 2

.byte (L3 - L0) / 2

...
L1: ...
L2: ...
L3: ...

...

adr.w r1, =L0
add.w r1, r1, r2, lsl #2
; indirect jump
mov pc, r1

L0: b.w L1
b.w L2
b.w L3
...

Figure 4.3: Constant Island Removal of a Jump-Table Jump

4.3.3 Constant Island Removal

By default, ARM compilers generate code that has constant data embedded in the code

region (so-called “constant islands”). Since PicoXOM prevents the code from reading

these constant islands, these programs will fail to execute when used with PicoXOM.

PicoXOM therefore transforms these programs so that all data within the program is

stored outside of the code region.

We have identified two cases of constant islands generated by LLVM’s ARM code

generator: load constants and jump-table jumps. Figures 4.2 and 4.3 show examples

of the two cases, respectively, as well as their corresponding execute-only versions to

which PicoXOM transforms them. Specifically, in the left part of Figure 4.2, a load

constant instruction loads a constant from a PC-relative memory location L into regis-

ter r0. Such instructions are usually generated to quickly load an irregular constant in

light of the limited immediate encoding scheme of the Thumb instruction set [21, 23].

PicoXOM transforms such load constants into MOVW and MOVT instructions that en-

code the 32-bit constant in two 16-bit immediates, as the right part of Figure 4.2 shows.

Jump-table jump instructions (TBB and TBH) [21, 23] are used to implement large
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switch statements; the second register operand (r2 in Figure 4.3) serves as an index

into a jump table pointed to by the first register operand (pc in Figure 4.3), and a

byte/half-word offset is loaded from the jump table to add to the program counter (pc)

to calculate the target of the jump. Optimizing compilers like GCC and LLVM usually

select pc as the first register operand in order to reduce register pressure, forcing the

jump table to be located next to the jump-table jump itself. PicoXOM transforms such

jump-table jumps into instruction sequences like that shown in the right part of Fig-

ure 4.3; it encodes the original jump table’s contents into a sequence of branch instruc-

tions and expands the jump-table jump into a few explicit instructions that calculate

which branch instruction to jump to and perform an indirect jump.

4.4 Implementation

We built our PicoXOM prototype for the ARMv7-M architecture. Our prototype pro-

vides MPU and DWT configurations as a run-time component written in C and executed

at the end of the device boot sequence. We implemented constant island removal as a

simple intermediate representation (IR) pass in the LLVM 10.0 compiler [142]. The

constant island removal pass simply uses the existing -mexecute-only option in

LLVM’s Clang front-end and passes it along to the link-time optimization (LTO) code

generator. Our prototype runs the constant island removal pass when linking the IR of

the application, libraries (e.g., newlib and compiler-rt), and MPU and DWT configura-

tions; this ensures that all code has no constant islands. Our prototype adds 88 source

lines of C++ code to LLVM and has 177 source lines of C code in the PicoXOM run-

time. Chapter 5 presents a PicoXOM implementation for ARMv8-M.

Different ARM microcontrollers support different numbers of MPU regions and

DWT comparators, and the maximum ranges of their DWT comparators may vary.

Our prototype runs on an STM32F469 Discovery board which supports up to 8 MPU

regions [235] and 4 DWT comparators [239]. Each DWT comparator can only watch



65

over a maximum address range of 32 KB (a maximal mask value of 15), limiting our

prototype to the following two options:

1. Use all 4 DWT comparators to support a maximum code size of 128 KB; the ap-

plication must run in unprivileged mode in order for the critical system registers

to be write-protected.

2. Configure one DWT comparator to write-protect the DWT registers

(0xE0001000 – 0xE0001FFF) and another to write-protect the SCB

(0xE000ED00 – 0xE000ED8F) and DEMCR (0xE000EDFC). This protects

a maximum code size of 64 KB using the remaining 2 DWT comparators.

To accommodate a wider range of applications on our board with less performance

loss, our prototype automatically chooses one option over the other based on the appli-

cation code size. It rejects an application if the code size exceeds our board’s 128 KB

limit.

While our PicoXOM prototype only supports single bare-metal embedded appli-

cations, PicoXOM can also support multiple applications running on an embedded

real-time operating system (RTOS) such as Amazon FreeRTOS [10]. On embedded

systems, the application and RTOS kernel code is linked into a single shared code seg-

ment. PicoXOM can protect this code segment with little adaptation.

4.5 Evaluation

We evaluated PicoXOM on our STM32F469 Discovery board [239] which has an ARM

Cortex-M4 processor implementing the ARMv7-M architecture that can run as fast as

180 MHz. The board comes with 2 MB of flash memory, 384 KB of SRAM, and 16 MB

of SDRAM, and has an LCD screen and a microSD card slot. We configured the board

to run at its fastest speed to understand the maximum impact that PicoXOM can incur

on performance.
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To evaluate PicoXOM’s performance and code size overhead, we used the

BEEBS [195] and CoreMark-Pro [92] benchmark suites and five embedded applica-

tions (FatFs-RAM, FatFs-uSD, LCD-Animation, LCD-uSD, and PinLock). BEEBS

targets energy consumption measurement for embedded platforms and is widely used

in evaluating embedded systems including uXOM [141], the state-of-the-art XOM im-

plementation on ARM microcontrollers. It consists of a wide range of programs char-

acterizing different workloads seen on embedded systems, including AES encryption,

data compression, and matrix multiplication. Of all 80 benchmarks in BEEBS, we

picked 42 benchmarks that have an execution time longer than 500 milliseconds when

executed for 10,240 iterations. CoreMark-Pro is a processor benchmark suite that

works on both high-performance processors and low-end microcontrollers, featuring

five integer benchmarks (e.g., JPEG image compression, XML parser, and SHA-256)

and four floating-point benchmarks (e.g., fast Fourier transform and neural network)

that stress the CPU and memory. FatFs-RAM and FatFs-uSD operate a FAT file sys-

tem on SDRAM and an SD card, respectively. LCD-Animation displays a single an-

imated picture loaded from an SD card. LCD-uSD displays multiple static pictures

from an SD card with fading transitions. PinLock simulates a smart lock reading user

input from a serial port and deciding whether to unlock (send an I/O signal) based on

whether the SHA-256 hashed input matches a precomputed hash. The above five ap-

plications represent real-world use cases of embedded devices and were also used to

evaluate previous work [9, 59, 60].

We used the LLVM compiler infrastructure [142] to compile benchmarks and appli-

cations into the default non-XO format, with MPU and DWT disabled; this is our base-

line. We then used PicoXOM’s configuration, i.e. enabling MPU, DWT, and constant

island removal. Note that with PicoXOM, none of the benchmarks and applications ex-

ceeds the code size limitation (128 KB) on our board. Only cjpeg-rose7-preset

in CoreMark-Pro has a code size larger than 64 KB and thereby has to run in unprivi-

leged mode; nevertheless, it does not require source code modifications as it does not
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Baseline (ms) PicoXOM (×) Baseline (ms) PicoXOM (×)

aha-compress 821 1.0000 nettle-arcfour 814 1.0000
aha-mont64 856 0.9988 picojpeg 43,864 1.0027
bubblesort 4,392 1.0000 qrduino 40,877 1.0030
crc32 956 1.0000 rijndael 70,024 1.0018
ctl-string 630 1.0000 sglib-arraybinsearch 808 1.0000
ctl-vector 786 0.9987 sglib-arrayheapsort 1,039 1.0000
cubic 35,140 1.0005 sglib-arrayquicksort 735 1.0000
dijkstra 36,582 1.0000 sglib-dllist 1,800 1.0000
dtoa 631 1.0127 sglib-hashtable 1,302 1.0000
edn 3,167 1.0003 sglib-listinsertsort 2,030 1.0000
fasta 16,900 0.9999 sglib-listsort 1,265 1.0008
fir 16,048 1.0000 sglib-queue 1,177 1.0000
frac 5,858 1.0323 sglib-rbtree 4,808 1.0025
huffbench 20,682 0.9995 slre 2,761 0.9873
levenshtein 2,685 1.0000 sqrt 38,506 1.0748
matmult-float 1,150 0.9991 st 20,906 1.0252
matmult-int 4,532 1.0000 stb perlin 5,132 1.0306
mergesort 24,353 1.0062 trio-snprintf 697 1.0100
nbody 128,126 1.0090 trio-sscanf 1,064 0.9915
ndes 2,039 0.9995 whetstone 112,754 1.0092
nettle-aes 5,687 0.9998 wikisort 113,195 1.0008

Min (×) 0.9873
Max (×) 1.0748
Geomean (×) 1.0046

Table 4.1: PicoXOM’s Performance Overhead on BEEBS (Lower is Better)

perform privileged operations.

4.5.1 Performance

We measured PicoXOM’s performance on our benchmarks and applications. We con-

figured each BEEBS benchmark to print the time, in milliseconds, for executing its

workload 10,240 times. We ran each BEEBS benchmark 10 times and report the av-

erage execution time. Each CoreMark-Pro benchmark is pre-programmed to print out

the execution time in a similar way; the difference is that we configure each benchmark

to run a minimal number of iterations so that the program takes at least 10 seconds to

run for each experimental trial. Again, we ran each benchmark 10 times and report the

average execution time. For the real-world applications, we ran FatFs-RAM 10 times

and report the average execution time. The other applications exhibit higher variance
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Baseline (ms) PicoXOM (×) Baseline (ms) PicoXOM (×)

cjpeg-rose7-preset 10,200 1.0001 parser-125k 12,363 1.0012
core 83,160 0.9918 radix2-big-64k 21,955 0.9961
linear alg-mid-100x100-sp 22,962 1.0000 sha-test 25,463 0.9995
loops-all-mid-10k-sp 33,830 0.9995 zip-test 23,227 1.0000
nnet test 282,398 1.0017

Min (×) 0.9918
Max (×) 1.0017
Geomean (×) 0.9989

Table 4.2: PicoXOM’s Performance Overhead on CoreMark-Pro (Lower is Better)
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Figure 4.4: PicoXOM’s Performance Overhead on Applications (Lower is Better)

in their execution times as they access peripherals like an SD card, an LCD screen, and

a serial port, so we ran them 20 times and report the average with a standard deviation.

All other programs exhibit a standard deviation of zero.

Tables 4.1 and 4.2 and Figure 4.4 present PicoXOM’s performance on BEEBS,

CoreMark-Pro, and the five real-world applications, respectively; Figure 4.4 shows

baseline execution time in milliseconds on top of the Baseline bars. Overall, PicoXOM

incurs negligible performance overhead of 0.33%: 0.46% on BEEBS with a maximum

of 7.48%, −0.11% on CoreMark-Pro with a maximum of 0.17%, and 0.02% on the

applications with a maximum of 0.22%. Thirteen programs exhibit a minor speedup

with PicoXOM. We re-ran our experiments with the MPU and DWT disabled so that

the only change to performance is due to constant island removal and the alignment

of the code segment (the DWT on ARMv7-M requires the monitored address range
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Baseline (bytes) PicoXOM (×) Baseline (bytes) PicoXOM (×)

aha-compress 30,164 1.0646 nettle-arcfour 29,988 1.0649
aha-mont64 31,236 1.0624 picojpeg 36,620 1.0599
bubblesort 29,868 1.0650 qrduino 37,228 1.0529
crc32 29,804 1.0654 rijndael 37,460 1.0516
ctl-string 30,668 1.0631 sglib-arraybinsearch 29,828 1.0654
ctl-vector 30,892 1.0624 sglib-arrayheapsort 29,956 1.0651
cubic 42,428 1.0329 sglib-arrayquicksort 30,036 1.0649
dijkstra 30,220 1.0644 sglib-dllist 30,364 1.0641
dtoa 36,204 1.0552 sglib-hashtable 30,164 1.0644
edn 30,940 1.0633 sglib-listinsertsort 30,052 1.0649
fasta 29,956 1.0650 sglib-listsort 30,100 1.0648
fir 29,884 1.0651 sglib-queue 29,988 1.0650
frac 30,468 1.0626 sglib-rbtree 30,564 1.0639
huffbench 30,988 1.0628 slre 32,284 1.0603
levenshtein 30,140 1.0647 sqrt 30,372 1.0641
matmult-float 30,108 1.0644 st 31,124 1.0602
matmult-int 30,060 1.0650 stb perlin 31,140 1.0627
mergesort 30,852 1.0604 trio-snprintf 33,724 1.0675
nbody 30,684 1.0633 trio-sscanf 34,156 1.0668
ndes 31,028 1.0630 whetstone 40,164 1.0371
nettle-aes 31,756 1.0614 wikisort 34,332 1.0541

Min (×) 1.0329
Max (×) 1.0675
Geomean (×) 1.0614

Table 4.3: PicoXOM’s Code Size Overhead on BEEBS (Lower is Better)

to be aligned by its power-of-two size). In this configuration, we observed the same

speedups, so either constant island removal and/or code alignment is causing the slight

performance improvement.

4.5.2 Code Size

We measured the code size of benchmarks and applications by using the size utility

on generated binaries and collecting the .text segment size.

Table 4.3 and Figures 4.5 and 4.6 show the baseline code size and the overhead

incurred by PicoXOM on BEEBS, CoreMark-Pro, and the five real-world applications,

respectively. On average, PicoXOM increases the code size by 6.14% on BEEBS,

4.39% on CoreMark-Pro, and 6.52% on the real-world applications, with a 5.89% over-

all overhead. We studied PicoXOM’s code size overhead and discovered that constant
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Figure 4.5: PicoXOM’s Code Size Overhead on CoreMark-Pro (Lower is Better)

island removal caused the majority of the code size overhead, especially for programs

with relatively large code bases like CoreMark-Pro. In fact, the additional code that

sets up the MPU and DWT only contributes a minor part of the overhead (1.22% and

0.53% on average, respectively).

4.6 Related Work

Two other XOM implementations exist for ARM microcontrollers. uXOM [141] pro-

vides XOM for ARM Cortex-M systems by transforming loads into special unpriv-

ileged load instructions and configuring the MPU to make the code region unread-

able by unprivileged loads. uXOM similarly transforms stores to protect the memory-

mapped MPU configuration registers. Since some loads and stores do not have un-

privileged counterparts, transforming them requires the compiler to insert additional

instructions, causing the majority of uXOM’s overhead. PicoXOM is more efficient in

both performance (0.33% compared to uXOM’s 7.3%) and code size (5.89% compared

to uXOM’s 15.7%) as no such transformation is needed. A trade-off for PicoXOM is

the code size limit on some ARMv7-M devices; we envision no such limit on ARMv8-
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Figure 4.6: PicoXOM’s Code Size Overhead on Applications (Lower is Better)

M. PCROP [233] is a programmable feature of the flash memory which prevents the

flash memory from being read out and modified by application code but still allows

code in the flash memory to execute. However, PCROP is only available on some

STMicroelectronics devices and cannot be used for other types of memory. In contrast,

PicoXOM relies on the MPU and DWT features [21, 23] which can be found on most

conforming devices and can protect code stored in any type of memory.

Hardware-assisted XOM has been explored on other architectures. The

AArch64 [22] and RISC-V [212] page tables natively support XO permissions. NO-

RAX [52] enables XOM for commercial-off-the-shelf binaries on AArch64 that have

constant islands using static binary instrumentation and runtime monitoring. Various

approaches [40, 65, 106, 107, 112, 280] leverage features of the MMU on Intel x86 pro-

cessors [123] to implement XOM. None of these approaches are applicable on ARM

embedded devices lacking an MMU. Lie et al. [147] proposed an architecture with

memory encryption to mimic XOM, but it only provides probabilistic guarantees and

cannot be directly applied to current embedded systems. Compared to solutions for

systems lacking native hardware XOM support, PicoXOM is faster as it has nearly no
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overhead.

Software can emulate XOM. XnR [27] maintains a sliding window of currently

executing code pages and keeps only these pages accessible. It still allows read ac-

cesses to a subset of code pages and may incur higher overhead for a smaller sliding

window size due to frequent page permission changes. LR2 [38] and kRˆX [205] in-

strument all load instructions to prevent them from reading the code segment. While

these software XOM approaches can generally be ported to embedded devices, they can

be bypassed by attacker-manipulated control flow and are less efficient than hardware-

assisted XOM [141].

There are also methods of hardening embedded systems. Early versions of SAFE-

Code [85] enforced spatial and temporal memory safety on embedded applications,

and nesCheck [177] uses static analysis to build spatial memory safety for simple

nesC [102] applications running on TinyOS [118]. PicoXOM enforces weaker pro-

tection than memory safety but supports arbitrary C programs (unlike SAFECode and

nesCheck) and does not rely on heavy static analysis like nesCheck. RECFISH [255],

µRAI [9], and Silhouette [282] (which we present in Chapter 3) mitigate control-flow

hijacking attacks on embedded systems. They protect forward-edge control flow us-

ing coarse-grained CFI [2] and backward-edge control flow by using either a protected

shadow stack [43] or a return address encoding mechanism. EPOXY [59] randomizes

the order of functions and the location of a modified safe stack from CPI [140] to resist

control-flow hijacking attacks on bare-metal microcontrollers. These systems do not

enforce XOM and are still vulnerable to forward-edge corruptions; they can incorpo-

rate PicoXOM’s techniques to mitigate forward-edge attacks with negligible additional

overhead.



73

Chapter 5

Leakage-Resistant Randomization

for Microcontrollers

5.1 Introduction

The increasing prevalence of Internet-of-Things devices challenges the security of

embedded microcontroller (MCU) systems. MCU software is commonly written

in C [131] and, consequently, suffers from memory safety vulnerabilities. These

vulnerabilities can be exploited by attackers to launch control-flow hijacking at-

tacks [33, 45, 46, 80, 109, 213, 248] which corrupt control data (e.g., return addresses

and function pointers) so that control flow is diverted to existing code in the program.

Worse yet, MCU software is typically executed in the processor’s privileged mode

alongside or without an operating system kernel. Successful exploitation of MCU soft-

ware means that the attacker controls the entire system.

To mitigate control-flow hijacking attacks on MCUs, previous work [9, 130, 191,

255, 264, 282] has explored control-flow integrity (CFI) [2] which protects or checks

the integrity of control data used in indirect control-flow transfers. However, CFI is

vulnerable to advanced attacks [46, 96] even with a fully precise static control-flow

graph (CFG) and a protected shadow stack. Also, CFI implementations on MCUs

incur high runtime overhead (8.1%–513% [9, 191, 282]), leaving them less likely to be
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deployed in practice.7

Randomization [201] with execute-only memory (XOM) [141, 227] is another

potential solution: by randomizing the location of code and preventing buffer over-

reads [241] from reading the code segment, attackers no longer know where reusable

code is located and therefore cannot divert control flow to the chosen code. How-

ever, such approaches have two key limitations on MCUs. First, the address space

on MCUs is limited: there is no virtual memory [21, 23], so the entropy of random-

ization is limited by the physical memory size (typically on the order of kilobytes to

megabytes). Brute force attacks [224] which simply guess the location of reusable

code can therefore succeed in short amounts of time. Second, and worse yet, previous

solutions [3, 59, 116, 199] do not mitigate control data leakage in which a buffer over-

read [241] leaks control data to learn the location of reusable code [65, 82, 204, 214]. In

fact, a proof-of-concept exploit we built shows that even a large-sized MCU protected

with randomization and XOM can be breached in less than an hour with the help of con-

trol data disclosure. On the other hand, control data leakage defenses [38, 65, 167, 205]

do exist in general-purpose systems, which hide control data using indirection or en-

cryption. However, they still leave control data identifiable and usable by attackers.

This chapter presents Randezvous, a system that mitigates control-flow hijacking

attacks against ARMv7/8-M MCUs which utilize brute force attacks and attacks which

leak control data. Built on top of previous work that randomizes code and global data

layouts [59] and enforces XOM [227], Randezvous protects control data with a set of

novel techniques we developed. At the center of Randezvous is a new concept called a

decoy pointer, which is a code pointer that points to a random unused trap instruction;

by filling unused data memory with decoy pointers, real code pointers are camouflaged

and thus protected. Leveraging decoy pointers in global data segments, Randezvous

moves return addresses into a diversified shadow stack and promotes local variables

7Silhouette [282] incurs 11.2%–12.1% runtime overhead on our NXP MIMXRT685-EVK board,
much higher than the reported 1.3%–3.4% on STM32F469 Discovery board. Section 5.7 discusses the
difference in more detail.
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containing function pointers into globals to protect them. To further reduce the danger

of return address leakage, Randezvous introduces return address nullification which

overwrites stale return addresses with decoy pointers so that leakage is limited to re-

turn addresses of currently executing functions. In addition to control data protection,

Randezvous improves the limited entropy on MCUs against attacks with delayed re-

boot and global guards. The former adds an artificial reboot delay to slow down brute

force attacks when an attack attempt is detected. The latter is an adaptation of mem-

ory guards [64] to mitigate spraying attacks that massively corrupt a memory region in

order to guarantee control-flow hijacking. Collectively, Randezvous builds a holistic

probabilistic (but measurably strong) defense against control-flow hijacking attacks on

MCUs, which is, to our best knowledge, the first to mitigate both control data leakage

and lack of entropy on MCUs. Compared to randomization with XOM alone, Ran-

dezvous significantly enhances the protection of in-memory control data and improves

the entropy against attacks.

We built a prototype of Randezvous for ARMv8-M MCUs at https://github

.com/URSec/Randezvous, upon the LLVM/Clang compiler [142]. We evaluated

Randezvous’s security by statistically modeling brute force attacks with control data

leakage, building a real exploit that demonstrates the necessity of Randezvous’s security

features, and analyzing how Randezvous can stop exploitations of a real-world CVE.

We also evaluated Randezvous’s overhead on three benchmark suites and two real-

world applications. On average, Randezvous incurred 5.9% performance overhead,

15.4% code size overhead, and 22.0% data size overhead.

To summarize, our contributions are as follows:

• We developed a set of novel control data protection techniques for MCUs that

strengthen randomization and XOM, centered on decoy pointers and including a

diversified shadow stack, return address nullification, and local-to-global variable

promotion.

https://github.com/URSec/Randezvous
https://github.com/URSec/Randezvous
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• We devised delayed reboot, a mechanism that mitigates brute force attacks ex-

ploiting the limited entropy on MCUs.

• We designed and implemented Randezvous, a strong holistic software diversity

approach to securing MCUs against control-flow hijacking attacks.

• We built the first mathematical model of brute force attacks with control data

leakage on MCUs to evaluate the strength of Randezvous’s defenses and demon-

strated the efficacy of Randezvous with a proof-of-concept exploit and a study on

a real-world CVE.

• We evaluated Randezvous on our benchmarks and applications and found that it

incurs, on average, 5.9% performance overhead, 15.4% code size overhead, and

22.0% data size overhead.

The rest of the chapter is organized as follows. Section 5.2 defines our threat model.

Sections 5.3 and 5.4 describe the design and implementation of Randezvous, respec-

tively. Section 5.5 evaluates the security of Randezvous, Section 5.6 evaluates the per-

formance of Randezvous, and Section 5.7 discusses related work.

5.2 Threat Model

We assume a benign but potentially buggy bare-metal MCU application with memory

safety errors that allow a remote attacker to write (and optionally read) arbitrary mem-

ory locations. We assume the attacker wants to launch a control-flow hijacking attack,

such as return-into-libc [224, 248] or return-oriented programming (ROP) [213, 223],

against the system. Memory safety attacks that do not corrupt control data (e.g., non-

control data attacks [49]) are out of scope. We further assume that the attacker has a

copy of the source code and can generate native code of the same instruction set as used

on the system (though layouts may be different due to randomization). The attacker can
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therefore locate exploitable vulnerabilities and find reusable code in the program’s code

segment for the aforementioned attacks. As Randezvous uses randomization to thwart

code reuse attacks, it faces several threats that may undermine its defenses:

Threat 5.1. An attacker may attempt to use a buffer overread [241] to read the code

segment and locate reusable code.

Threat 5.2. An attacker may attempt to use a buffer overread [241] to read control

data (pointers to code like return addresses and function pointers) out of memory to

locate reusable code.

Threat 5.3. An attacker may attempt to guess the location of reusable code or the

location of a control data slot (a memory location containing control data) in a brute

force attack.

Threat 5.4. An attacker may corrupt a control data slot to hijack the control flow.

Threat 5.5. An attacker may “spray” control data across a memory region [231] to

corrupt all control data slots within that region.

5.3 Design

Randezvous is a compiler that transforms code installed on an ARMv7/8-M MCU

and a set of runtime support routines used by the MCU’s reset and exception han-

dlers. Our design requires the memory protection unit (MPU) support, the set of

debug registers needed by PicoXOM [227], and a hardware-based cryptographically

secure pseudorandom number generator (CSPRNG). These features are available on

many real-world MCUs, from low-end (e.g., STM32L412R8 [240]) to high-end (e.g.,

MIMXRT685-EVK [190]) and across manufacturers (e.g., STMicroelectronics [238],

Microchip [174], and Renesas [210]).
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In principle, Randezvous protects control data by destroying it when possible and

hiding it with improved entropy when destruction is infeasible. We break down Ran-

dezvous’s design components into three categories:

1. randomization and code protection,

2. control data protection, and

3. entropy improvements.

We first describe the randomization and code protection schemes that Randezvous

employs, which previous work [59, 227] explored. We then explain how Ran-

dezvous’s control data protection and entropy-improving techniques mitigate the ad-

ditional threats described in Section 5.2. Though orthogonal to issues that Randezvous

addresses, we also discuss how to deploy compile-time diversified binaries at scale.

5.3.1 Randomization and Code Protection

Traditional code reuse attacks [213, 248] require the attacker to know a priori the

location of reusable code in memory. Randezvous therefore utilizes randomiza-

tion and XOM to force the attacker to either use a buffer overread to leak control

data [65, 82, 204, 214] or use brute force attacks that guess the location of reusable

code.

Specifically, Randezvous performs the following randomized permutations of code

at compile time:

1. Function layout reordering: Randezvous places each function in the program at

a random location in the code segment.

2. Basic block layout reordering: In each function, Randezvous shuffles the order

of basic blocks. If a basic block can fall through to a successor, they are kept

contiguous in memory to avoid adding extra branch instructions to the code.
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3. Trap instruction insertion: Randezvous fills unused code segment memory (be-

tween functions and between basic blocks that do not fall through) with trap

instructions. These instructions are never executed during benign executions and

only detect attack probes that jump to unused code. When that happens, Ran-

dezvous’s trap handler responds by rebooting the system and optionally alerting

a system administrator that a potential attack attempt has been thwarted.

Randezvous also randomizes the layout of global data segments (i.e., .rodata,

.data, and .bss) at compile time by placing each memory object at a random loca-

tion in its segment. The reason to use compile-time randomization rather than runtime

rerandomization is that, compared to the former, the latter requires significantly more

MCU resources (e.g., separate memory for storing the original program to be random-

ized) while only adding one extra bit of entropy against brute force attacks [224].

To mitigate Threat 5.1, Randezvous employs XOM on the code segment. As the

ARMv7/8-M MPU does not support XOM [21, 23], Randezvous employs a software

alternative named PicoXOM, as we present in Chapter 4. PicoXOM [227] configures

the ARM debug registers, called Data Watchpoint and Trace (DWT) comparators [21,

23], to generate a trap if a read is performed from the code segment. Furthermore,

since the debug registers are memory-mapped [21, 23], PicoXOM uses additional DWT

comparators to ensure that XOM cannot be disabled by writing to the debug registers.

5.3.2 Control Data Protection

Randomization plus XOM defeats Threat 5.1. However, an attacker can attack the sys-

tem by leaking control data (Threat 5.2) or by guessing the location of code (Threat 5.3)

and then corrupting control data in memory (Threats 5.4 and 5.5). We now describe how

Randezvous protects the confidentiality and integrity of control data.
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Decoy Pointers To mitigate Threats 5.2 and 5.4, we developed decoy pointers, which

are code pointers that point to random trap instructions and are used to fill unused data

memory. Unlike other techniques used in code/data layout randomization, decoy point-

ers are novel as they, when combined with randomization and XOM, can camouflage

genuine control data (slots): attackers leaking data via a buffer overread [241] cannot

distinguish actual control data from decoy pointers; neither can they distinguish control

data slots from unused data memory. Even if leaked, decoy pointers are lethal and using

them in control-flow hijacking risks trapping the system.

By default, Randezvous only fills unused memory in the global data segments with

decoy pointers. Subsequent paragraphs explain how Randezvous protects control data

on the stack by moving it to the global data segments. As many MCU heap implementa-

tions simply manage a statically allocated chunk of memory in a global data segment as

the heap, such a heap as a whole benefits from decoy pointers placed around it. A more

overhead-tolerant implementation could camouflage in-heap control data by providing

a custom free() that refills freed memory with decoy pointers.

Diversified Shadow Stack Return addresses on the stack pose two challenges in

our threat model. First, return addresses are the most common target to corrupt in

code reuse attacks (Threat 5.4). Second, return addresses are relatively easy to leak

(Threat 5.2) via stack-based buffer overreads [241]. Randezvous must protect return

addresses to mitigate these threats.

Randezvous protects return addresses by using a diversified shadow stack, which is

a compact shadow stack [43] with random per-function strides. Randezvous employs

four methods of randomizing the shadow stack. First, Randezvous places the shadow

stack in the .data segment so that its location is randomized at compile time. Second,

Randezvous initializes the shadow stack with decoy pointers, camouflaging real return

addresses. Third, Randezvous selects a static random stride value for each function

at compile time. Fourth, Randezvous selects a dynamic global random stride value at
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boot time from the CSPRNG. For each non-leaf function, the static and dynamic stride

values are added to a shadow stack pointer in its prologue to determine the location

for saving the return address for the next function call. Likewise, the stride values are

subtracted from the shadow stack pointer in its epilogue before loading its own return

address from the shadow stack. Since the dynamic stride value is selected at boot

time, the memory locations to which return addresses are stored get rerandomized for

each reboot. Randezvous further encodes the static stride values in code and keeps the

shadow stack pointer and dynamic stride value in reserved registers to prevent leakage

and corruption.

Local-to-Global Variable Promotion Local variables that hold function pointers are

susceptible to leakage (Threat 5.2) or corruption (Threat 5.4) as they are stored on the

regular stack. An attacker can use a buffer overflow to corrupt them with addresses of

reusable code and can also use a buffer overread [241] to leak them and use them to

learn the location of reusable code. To mitigate such threats, we developed a simple

local-to-global variable promotion transformation in the Randezvous compiler. This

transformation converts local variables that may contain function pointers into global

variables, enabling global data layout randomization to randomize their locations and

decoy pointers to camouflage them.

The transformation is safe as long as the function containing the promoted variable

is not called recursively or concurrently by multiple threads. To support local function

pointers in recursive functions, Randezvous promotes each of such function pointers to

an array and requires a maximum recursion depth specified as the array length. The

function is then instrumented to use a copy of the function pointer for each recursion.

As Randezvous targets bare-metal single-threaded MCU applications, multithreading

is not an issue. To support multithreading, all promoted variables (as well as the di-

versified shadow stack described earlier in this section) must be placed in thread-local

storage. We leave multithreading support for future work.
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Return Address Nullification Our diversified shadow stack described earlier in this

section mitigates return address leakage. However, a buffer overread [241] may still

allow an attacker to leak large amounts of the shadow stack at a time. To further reduce

the danger of such leakage, we developed a new compiler transformation called return

address nullification which overwrites the stale return address on the shadow stack with

a null value before a function returns. This transformation ensures that a single buffer

overread can only leak the return addresses of actively executing functions, limiting the

number of return addresses a particular buffer overread can disclose.

When nullifying a return address, instead of zeroing it out, Randezvous overwrites it

with a distinct decoy pointer statically chosen and encoded in code for each nullification

site. In this way, Randezvous ensures that memory used for return addresses always

appears to be decoy pointers, sustaining its initial state.

5.3.3 Entropy Improvements

Despite Randezvous’s randomization and control data protection schemes, the entropy

they provide on MCUs with small memory size may not effectively resist brute force

and control data spraying attacks (as Section 5.5 will discuss). This section discusses

how Randezvous improves the limited entropy on MCUs to mitigate such attacks.

Delayed Reboot Randezvous’s code reuse defenses are probabilistic: each time an

attacker tries to attack the system by guessing where reusable code is located or by

guessing which chunk of memory contains control data, there is a small chance that

the attacker will guess correctly. Consequently, if the attacker repeatedly tries different

values and has no bound on the number of attack attempts (Threat 5.3), there is an

amount of time by which the attacker is expected to guess correctly and succeed. It is

then natural to ask how long a system is expected to resist such brute force attacks. If

the time is sufficiently long, then probabilistic defenses suffice.
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Our security analysis in Section 5.5 models such attacks and computes the time by

which we expect an attacker to succeed. Our analysis shows that the entropy provided

by the aforementioned Randezvous defenses alone may not effectively resist such at-

tacks for a reasonable length of time for all MCUs; small-sized MCUs simply have too

few places in which to hide code and/or camouflage control data.

As the number of possible locations of a single piece of reusable code or control

data is too small, the only other recourse is to make each failed attack attempt take

longer. Hence, we devised a technique called delayed reboot which artificially delays

a system’s reboot. Whenever it detects a trap caused by a violation of Randezvous’s

security policies, Randezvous reboots the system. Successive reboots are incremen-

tally slowed, artificially reducing the number of failed attempts an attacker can feasibly

perpetrate in a given amount of time. For the i-th successive reboot caused by a vi-

olation, an artificial delay in time Di is added to the boot sequence. Di increases as

i increases until the number of such reboots reaches a predetermined value R, after

which Di remains constant.

Delayed reboot exchanges availability for confidentiality and integrity through con-

figuration of the parameter R and the delay function incrementing Di: a smaller value

of R and larger values of Di provide more integrity and confidentiality at the expense

of availability. Section 5.5 quantifies the security gain and availability loss of using

delayed reboot, and we use our analysis results to inform concrete configurations to

meet specific system requirements. However, we note that delayed reboot may not be

appropriate for systems with hard real-time requirements or that cannot tolerate service

disruptions. For example, a car’s engine control unit may not be suitable for delayed

reboot due to real-time constraints while, in contrast, a network of monitoring sensor

devices can tolerate delayed reboot, especially if multiple devices monitor overlapping

areas to provide redundancy. Systems that cannot use delayed reboot will need to use

more memory to gain the entropy needed to stay secure.
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Global Guards Randomizing global data and camouflaging control data with decoy

pointers together hinder an attacker from corrupting control data in the global data seg-

ments. However, the attacker can still corrupt control data in these regions via spraying

attacks (Threat 5.5). If corrupting non-control data does not crash the program, a buffer

overflow that writes to the whole .data segment is guaranteed to corrupt control data

in the .data segment, neutralizing the already limited entropy of randomization.

To mitigate this threat, we repurposed guard memory [64], which was originally

meant to detect stack smashing only. At boot time, Randezvous uses the CSPRNG to

randomly select one or more randomly sized pieces of unused data memory as global

guards and configures the MPU to disallow writes to them (the specific number depends

on how many regions the MPU can support). Attempted writes to them cause a trap and

trigger a reboot.

Global guards establish the entropy against spraying attacks; successful attacks

must avoid writing to any global guards, which becomes much less probable. Since

global guards are randomly selected at boot time, their location information from pre-

vious failed attack attempts cannot be used to inform future attacks.

5.3.4 Diversified Binary Deployment

Deploying and updating diversified MCU application binaries provides challenges to

software developers. However, we believe that such challenges can be readily ad-

dressed. When a device manufacturer releases a new version of software for an MCU,

they can first translate all compilation units to LLVM intermediate representation (IR)

bitcode and link the files into a single LLVM IR file containing all the code using

LLVM’s link-time optimization (LTO) features [142]. They can then, for each device,

generate random seeds using a CSPRNG or a true random number generator (TRNG),

have the compiler’s code generator translate the LLVM IR into a randomized binary

using those seeds, and then record in a database the hash of the generated binary and
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Figure 5.1: Memory Protection of Randezvous Prototype

the seeds that were used to create it.

When a customer submits a crash dump or requests a service from the device man-

ufacturer that requires knowing which diversified binary the customer is using, the cus-

tomer can simply supply the hash of their binary file. The device manufacturer can

then feed the corresponding random seeds from the database into the code generator

and regenerate the randomized binary. In this way, the device manufacturer can always

re-create the randomized binary without having to store a copy of each binary given to

a customer.

5.4 Implementation

We built a prototype of Randezvous for the ARMv8-M architecture with all of our

design components except delayed reboot; we opted not to implement it as it does not

impact our evaluation. We added four compiler passes to LLVM/Clang 11.0.1’s ARM

code generator [142], totaling 4,336 source lines of code using Tokei 12.1.2 [269]. We

now describe our prototype’s memory layout and then describe implementation details

of our compiler passes.
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5.4.1 PicoXOM Enhancements and Memory Configuration

PicoXOM, Randezvous’s XOM component, was only implemented for ARMv7-

M [227], as Chapter 4 described. We extended its MPU and DWT configuration code

to support ARMv8-M. Unlike the previous implementation on ARMv7-M, which can

only protect code segments up to 128 KB, we have verified that PicoXOM on ARMv8-

M can support an arbitrary code size. This allows our prototype to support larger code

bases. It also increases the entropy for code layout randomization if the usable mem-

ory for code is larger than 128 KB. Our extended PicoXOM implementation contains

361 source lines of C code.

Figure 5.1 shows our Randezvous prototype’s memory protection. It requires five

MPU regions to cover code, read-only data, RAM, a single global guard, and periph-

erals. Note that the System region requires no separate MPU region because it is read-

able, writable, and execute-never for privileged code regardless of the MPU configu-

ration [23]. ARMv8-M DWT comparators must be used in pairs to monitor memory

address ranges [23], so our prototype uses four DWT comparators (two pairs) to read-

protect the code segment and write-protect critical memory-mapped system registers.

5.4.2 Code Layout Randomization

The code layout randomization pass, as Section 5.3.1 describes, randomizes the code

layout by shuffling the order of functions and basic blocks and inserting trap instruc-

tions between them. It takes a size option for developers to specify the maximum

code size and a seed option to be able to generate different code layouts. We used

LLVM’s RandomNumberGenerator [160] to make our experimental results more

reproducible.
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push {r4, lr}
...
pop {r4, pc}

(a) Original Code

str lr, [r8], #32
add r8, r8, r9
push {r4}
...
pop {r4}
sub r8, r8, r9
ldr pc, [r8, #-32]!

(b) Diversified Shadow Stack
w/ Static Stride of 32

str lr, [r8], #32
add r8, r8, r9
push {r4}
...
pop {r4}
sub r8, r8, r9
ldr lr, [r8, #-32]!
movw ip, #decoy-lo16
movt ip, #decoy-hi16
str ip, [r8]
bx lr

(c) Return Address Nullifica-
tion

Figure 5.2: Example of Randezvous Prologue/Epilogue Transformations

5.4.3 Global Data Layout Randomization

The global data layout randomization pass randomizes the layout of global data seg-

ments by shuffling the order of global variables and inserting an unused memory object

(called a garbage object) of random size between each two of them. Similarly, it takes

three size options for the maximum size of the three global data segments and also

comes with a seed option. We opted to implement decoy pointers and global guards in

this pass as well, as they reside in the global data segments. The former is by initializ-

ing .rodata and .data garbage objects with addresses of random trap instructions.

For the latter, we opted to implement support for a single global guard by randomly

picking a developer-specified number of .data garbage objects and encoding their

addresses and sizes in a runtime function. This function randomly picks a garbage ob-

ject from those encoded ones as the global guard and returns its address and size; the

source of randomness used in the function is the CSPRNG whose address is specified

by developers. Randezvous’s MPU configuration code calls this function and sets up a

read-only MPU region for the global guard.
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5.4.4 Diversified Shadow Stack

The diversified shadow stack pass transforms function prologues and epilogues so that

they access the shadow stack for their return addresses. The pass takes a seed option

and creates the shadow stack as a global variable whose size can be specified by devel-

opers. The shadow stack’s location in the .data segment is randomized by the global

data layout randomization pass. To improve performance and avoid leakage of the

shadow stack address and stride, we reserve two callee-saved registers r8 and r9 for

the shadow stack pointer and stride value, respectively. Our pass generates a runtime

function to initialize the two registers: it sets r8 to point to the shadow stack, loads

a random number to r9 from the CSPRNG, and clears a developer-specified number

of high bits in r9 to limit the stride length. The system’s boot code calls this function

before making any other function calls. During transformation, our pass generates a

random static stride for each function, whose length is also limited by the same number

of bits. As the pass already finds and transforms instructions in function epilogues,

we opted to implement return address nullification in the pass as well. For each in-

strumented function epilogue, our pass randomly picks a trap instruction and generates

code that writes its address back to the shadow stack. Figure 5.2 illustrates the two

transformations performed on a function’s prologue and epilogue.

5.4.5 Local-to-Global Variable Promotion

The local-to-global variable promotion pass promotes local variables whose type con-

tains function pointer types to globals, as Section 5.3.2 describes. The pass operates on

LLVM IR bitcode before it is lowered to machine code. As none of our benchmarks and

applications uses local function pointers in recursive functions, we elided implementing

support for it.
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Symbol Definition
SC Size of randomized code segment
SCO

Size of original application code
ST Size of control flow target
SD Size of randomized .data segment
SD′ Size of memory in .data that does not resemble control data
SD0

Size of zeroed memory in .data
SG Total size of all global guards
SW Size of memory in .data that attacker chooses to corrupt
N Number of control data slots in .data
pS,x Probability of success w/ Strategy x
pT,x Probability of finding/hitting a trap w/ Strategy x
Fx Search space size of Strategy x
pi Probability of success at i-th guess regardless of strategy
A # of bin permutations (only for Equ. 5.5, 5.6, and 5.7)
CS # of bin combinations where attacker succeeds (only for Equ. 5.5, 5.6, and 5.7)
AS # of bin permutations where attacker succeeds (only for Equ. 5.5, 5.6, and 5.7)
pS Probability of success
pT Probability of trapping the system
Px Number of guesses for a success in Strategy x
P Number of brute force attacks for a success
E(X) Expected value of random variable X
tB Time from booting to reaching an exploitable vulnerability
tN Time for attacker to send and receive data over network
Tn Expected time to resist brute force attacks w/o delayed reboot
Td Total time of delay provided by delayed reboot
Tmin Expected time to resist brute force attacks w/ delayed reboot
Di Time of delay at i-th reboot caused by security violation
R Number of reboots after which reboot delay stops increasing

Table 5.1: Mathematical Symbol Definitions in Randezvous Security Evaluation

5.5 Security Evaluation

We now evaluate Randezvous’s security by measuring the entropy it adds to three

different-sized MCUs and computing the amount of reboot delay needed to protect

these systems from attacks for a given amount of time. We then provide a proof-

of-concept exploit that experimentally demonstrates the security of Randezvous and

a study on how Randezvous could mitigate attacks exploiting a real-world CVE. Ta-

ble 5.1 lists all mathematical symbols used in this section for quick reference.
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5.5.1 Attack Procedure

We model a return-into-libc [224, 248] control-flow hijacking attack as it is the sim-

plest. Other types of attacks (e.g., ROP [213, 223] and JIT-ROP [230]) require locating

additional reusable code and therefore require leaking or guessing more code locations.

Consequently, if Randezvous can resist return-into-libc attacks, it should be able to re-

sist these more sophisticated attacks as well. In the return-into-libc attack, the attacker

follows the two steps below:

1. Locate the control flow target to which to jump. For a return-into-libc attack, this

is the address of a function.

2. Find a control data slot and corrupt it with the address of the control flow target

acquired in Step 1. This is usually where a return address or a function pointer is

stored, which will be used in a future control flow transfer.

On an unprotected system, Step 1 can be skipped because the attacker has a pri-

ori knowledge of the code layout. However, as Randezvous randomizes the code and

data layouts and forbids code reads via PicoXOM [227] (Section 5.3.1), the attacker is

forced to

1a) guess the location of the control flow target, or

1b) try leaking a return address using a buffer overread, or

1c) try leaking a function pointer (if any) using a buffer overread.

Similarly, in Step 2, finding the address of a control data slot is no longer straightfor-

ward for the attacker; in Randezvous, control data is stored in the .data segment (Sec-

tion 5.3.2), randomized to unknown locations (Section 5.3.1), camouflaged among nu-

merous decoy pointers (Section 5.3.2), and protected by randomly-picked non-writable

global guards (Section 5.3.3). As a result, the attacker must either
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2a) guess the location of a control data slot to corrupt, or

2b) massively corrupt part of the .data segment, aiming to corrupt a desired control

data slot while hitting none of the global guards, i.e., a control data spraying

attack [231].

5.5.2 Attack Probe Analysis

Our analysis assumes that the attacker knows the boundaries of randomized memory

regions and makes no out-of-bounds guesses in Steps 1 and 2. While not always true

in practice, this assumption biases the analysis in the attacker’s favor and simplifies our

analysis.

We first analyze the expected number of attempts the attacker needs for each strat-

egy to complete Step 1. For Strategy 1a, let SC be the size of the randomized code

segment, SCO
be the size of the original application code, and ST be the size of the con-

trol flow target. Assuming the control flow target is 2-byte aligned (typical for Thumb

instructions [21, 23]) and has an equal chance to appear in each eligible location, then

the probability of success is pS,1a = 2
SC−ST+2

; the chance of finding a trap instruction

can be approximated as pT,1a =
SC−SCO

SC
· SC−ST

SC
. For a brute force attack, an attacker

can simply retry the attack repeatedly with different values for the control flow target

until the attack works, excluding previously guessed values each time a new guess is

made. If Px is a random variable representing the number of guesses for a success in

Strategy x (x ∈ {1a, 1b, 1c, 2a, 2b}), then the expected number of guesses for complet-

ing Step 1 with Strategy 1a is

E(P1a) =
SC − ST + 4

4
. (5.1)

To derive Equation 5.1, let F1a be the search space size of Strategy 1a. We have

F1a =
SC − ST + 2

2
.
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We hereafter use pi to represent the probability of success at i-th guess regardless of

the strategy. In Strategy 1a, we have

pi =
����F1a − 1

F1a

·�
���F1a − 2

����F1a − 1
· · ·((((((

F1a − i+ 1

((((((
F1a − i+ 2

· 1

((((((
F1a − i+ 1

=
1

F1a

.

So the expected number of guesses for a success in Strategy 1a, E(P1a), can be ex-

pressed by:

E(P1a) =

F1a∑
i=1

i · pi =
F1a∑
i=1

i · 1

F1a

=
SC − ST + 4

4
.

For Strategies 1b and 1c, our analysis assumes the attacker’s best case scenario: a

function pointer or return address pointing into the desired function exists in a single

memory location; if leaked, the attacker can locate the function. In this scenario, the

attacker first uses a buffer overread [241] to leak the entire contents of the .data seg-

ment and then examines it for the desired control data. Even so, the attacker can at

most eliminate values that do not look like control data and still must guess which of

the remaining ones can be used. This is because Randezvous randomizes the .data

segment layout and camouflages control data with decoy pointers. Let SD be the size

of the randomized .data segment, SD′ be the size of memory in the .data segment

that does not look like control data, and N be the number of control data slots in the

.data segment. N can be approximated by the current call chain depth (due to re-

turn address nullification in Section 5.3.2) plus the number of function pointers in the

program. Assuming the desired control data has an equal chance to appear in each

possible location, the attacker must try every memory location that appears to contain

control data. The probability of success is pS,1b = pS,1c =
4

SD−SD′
, and the probability

of finding a decoy pointer is approximately pT,1b = pT,1c =
SD−SD′−4N

SD−SD′
. The difference

between Strategies 1b and 1c is whether the attacker can exclude a previously incorrect

guess: return addresses might be stored in different memory locations as the dynamic

shadow stack stride is randomized on each boot, while function pointers always re-

side in the same address across reboots as the .data segment is randomized once at
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compile time. This leads to a difference in the expected number of guesses, shown in

Equations 5.2 and 5.3, respectively:

E(P1b) =
SD − SD′

4
(5.2)

E(P1c) =
SD − SD′ + 4

8
(5.3)

To derive Equation 5.2, we first have

pi = (1− pS,1b)
i−1pS,1b.

So

E(P1b) =
∞∑
i=1

i · pi =
∞∑
i=1

i(1− pS,1b)
i−1pS,1b.

According to geometric distribution,

E(P1b) =
1

pS,1b
=

SD − SD′

4
.

Similar to the derivation of Equation 5.1, to derive Equation 5.3, let F1c be the search

space size of Strategy 1c. We have

F1c =
SD − SD′

4

and

pi =
1

F1c

.

So

E(P1c) =

F1c∑
i=1

i · pi =
F1c∑
i=1

i · 1

F1c

=
SD − SD′ + 4

8
.

We now consider the expected number of attempts needed to complete Step 2. For

Strategy 2a, the attacker can also leverage a buffer overread [241] on the .data seg-
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ment to filter out memory that does not resemble control data except for zeroed memory,

which might be uninitialized control data slots. Let SD0 be the size of zeroed memory

in the .data segment and SG be the total size of all global guards. The chance of

success is pS,2a = 4N
SD−SD′+SD0

, and the chance of hitting any of the global guards is

pT,2a = SG

SD−SD′+SD0
. Similar to Strategy 1b, the attacker cannot exclude previously

incorrect guesses due to both the dynamic shadow stack stride and the global guards,

so the expected number of guesses is

E(P2a) =
SD − SD′

4N
. (5.4)

Similar to the derivation of Equation 5.2, to derive Equation 5.4, we have

pi = (1− pS,2a)
i−1pS,2a.

and

E(P2a) =
∞∑
i=1

i · pi =
∞∑
i=1

i(1− pS,2a)
i−1pS,2a.

According to geometric distribution,

E(P2a) =
1

pS,2a
=

SD − SD′

4N
.

For Strategy 2b, let SW be the size of memory in the .data segment that the

attacker chooses to corrupt. Equations 5.5 and 5.6 give the probability of success and

of hitting a global guard, respectively, and Equation 5.7 computes the expected number

of attempts:

pS,2b =

∑min(N,
SW
4

)

i=1 C(N, i)C(SD−SG

4
−N, SW

4
− i)

C(SD

4
, SW

4
)

(5.5)

pT,2b = 1− pS,2b −
C(SD−SG

4
−N, SW

4
)

C(SD

4
, SW

4
)

(5.6)
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E(P2b) =
1

pS,2b
(5.7)

To help derive Equations 5.5, 5.6, and 5.7, note that the condition of success is by

corrupting at least one of N control data slots while hitting none of the current global

guards, and note that the condition of trapping the system is by hitting any of the current

global guards. This can be modeled as the following situation:

• The attacker picks SW

4
consecutive bins out of SD

4
bins sorted in a certain order,

N of which are black (representing control data slots) and SG

4
of which are red

(representing the current global guards).

• The attacker succeeds if the SW

4
bins she picks contain no red bin and at least one

black bin.

• The attacker traps the system if the SW

4
bins she picks contain at least one red bin.

The total number of different bin permutations (denoted as A) is SD

4
!. The number of

bin combinations in which the attacker succeeds (denoted as CS) is the number of all

possible combinations of i black bins and SW

4
−i non-black non-red bins (i ∈ {1, 2, . . . ,

min(N, SW

4
)}), which can be calculated by

CS =

min(N,
SW
4

)∑
i=1

C(N, i)C(
SD − SG

4
−N,

SW

4
− i).

This number can then be used to calculate the number of bin permutations in which the

attacker succeeds (denoted as AS), by multiplying it with the number of all possible

permutations with the starting location of the SW

4
bins fixed (as the bins the attacker

picks must be consecutive). So we have

AS = CS ·
SW

4
! · SD − SW

4
!
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and therefore

pS,2b =
AS

A
=

∑min(N,
SW
4

)

i=1 C(N, i)C(SD−SG

4
−N, SW

4
− i)

C(SD

4
, SW

4
)

.

We can calculate pT,2b indirectly by first calculating the probability of the attacker pick-

ing all SW

4
bins as non-black non-red bins and then doing a subtraction from 1. Since

the number of bin combinations of SW

4
non-black non-red bins is C(SD−SG

4
−N, SW

4
),

we can easily get

pT,2b = 1− pS,2b −
C(SD−SG

4
−N, SW

4
)

C(SD

4
, SW

4
)

.

Finally, E(P2b) is derived in a similar way to that in E(P1b) and in E(P2a). We have

pi = (1− pS,2b)
i−1pS,2b

and

E(P2b) =
∞∑
i=1

i · pi =
∞∑
i=1

i(1− pS,2b)
i−1pS,2b.

According to geometric distribution,

E(P2b) =
1

pS,2b
.

Combining the two steps, there are three outcomes:

1) success, only when an attacker makes a correct guess in both steps;

2) nothing happening, due to an incorrect guess in Step 2 that hits none of the global

guards;

3) trap, which can be caused by an incorrect guess in either Step 1 (finding a decoy

pointer) or Step 2 (hitting any of the global guards).

As none of the two unsuccessful outcomes gives information about which control data
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(slot) is (in)correct, the attacker can only guess blindly in both steps. Let P be a random

variable of the number of brute force attacks for a success. Since the two steps are

independent of each other, we have the chance of success pS = pS,x · pS,y, the chance

of trapping the system pT = pT,x · pS,y + pT,y, and the expected number of brute force

attacks for a success E(P ) = E(Px) · E(Py) if the attacker adopts Strategies x and y

(x ∈ {1a, 1b, 1c} and y ∈ {2a, 2b}).

5.5.3 Time Analysis

Entropy measures a system’s randomness, but it fails to measure the system’s strength

against brute force attacks as it fails to consider the frequency at which attacks are

launched. We therefore analyze how long a Randezvous-protected system, with dif-

ferent sizes, can resist brute force attacks. This analysis informs the configuration of

delayed reboot and thus controls the security/availability trade-off.

Let tB be the time from booting to reaching a vulnerability that an attacker can

exploit and tN be the time for the attacker to send an attack payload and receive its

execution result over the network. Without Randezvous’s delayed reboot, we can expect

the system to withstand brute force attacks by an amount of time Tn = (pT · tB + tN) ·

E(P ). With delayed reboot providing a total delay of Td, we wish the whole system

to resist brute force attacks for at least an amount of time Tmin before the attacker

finishes the expected number of attack payloads to succeed. So we have Td ≤
∑R

i=1 Di,

Tn + Td = Tmin, and R ≤ pT · E(P ), where R is the number of reboots after which

the delay stops increasing and {Di}Ri=1 is the sequence of the delay Randezvous adds

to the i-th reboot, as Section 5.3.3 describes.

We aim to protect the system from brute force attacks for three or more days.

Three days give the system time to alert an administrator about the attack and for

the administrator to respond, even if the attack commences during a short period in

which the administrator is unavailable (e.g., a weekend). Table 5.2 lists three sets
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Small Medium Large All Systems
SC 32 KB 1 MB 16 MB SG 32 bytes
SCO

16 KB 128 KB 1 MB ST 16 bytes
SD 32 KB 256 KB 4 MB SW 128 bytes
SD′ 1 KB 4 KB 32 KB tB 1 second
SD0 128 bytes 512 bytes 1 KB tN 0.6 seconds
N 8 32 64 Tmin 3 days

Table 5.2: Common Values for Randezvous Time Analysis

System Case Strategies E(P ) pT Tn

Small Worst {1a, 2a} 8,155,248.0 0.151% 56.8 days
Small Best {1c, 2b} 132,651.0 6.073% 1.0 days
Medium Worst {1a, 2a} 529,522,800.0 0.557% 10.1 years
Medium Best {1c, 2b} 2,087,482.7 1.934% 15.0 days
Large Worst {1a, 2a} 68,199,318,000.0 0.007% 1,297.7 years
Large Best {1c, 2b} 266,649,737.1 0.220% 5.1 years

Table 5.3: Randezvous Time Analysis Results (Best/Worst for the Attacker)

of common values representing three MCUs of different sizes (STM32L412R8 [240],

STM32F469NIH6 [236], and MIMXRT685-EVK [189, 190]) and values we pick to

evaluate attacks (latencies are based on a wireless network [229]) and Randezvous’s

protections. By substituting all variables with their corresponding values in each set,

we can estimate whether delayed reboot is needed (i.e., whether Tn < Tmin) and, if

so, how much delay can be scattered throughout all R reboots. Our results, summa-

rized in Table 5.3, show that the medium and large systems do not need delayed reboot;

Randezvous’s other protections can mitigate all the modeled attacks for at least half a

month. The small system, however, requires an average per-reboot delay of 21.3 sec-

onds to keep it probabilistically secure for three days against all possible attack strate-

gies that we evaluated.

While our results necessitate delayed reboot for certain systems, we note that using

an exponentially-growing delay will still provide reasonable availability when an attack

commences while maintaining our target of three days worth of resilience. For example,

our best case for the attacker expects the system to trap 8055.3 times; Randezvous could

be configured with {Di}Ri=1 as an exponential sequence with D1 = 100 ms, R = 8055,
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and a ratio of 1.001. Even at the 2000-th reboot (at which point an administrator should

have been notified), the delay on a single boot is just around 738 ms.

5.5.4 Exploit Analysis

Proof-of-Concept Exploit We built a proof-of-concept exploit to showcase Ran-

dezvous’s security. The exploit consists of a script representing an attacker and a vul-

nerable application that can run on an NXP MIMXRT685-EVK board [190]. The ap-

plication contains both arbitrary memory read and write vulnerabilities, matching our

threat model in Section 5.2. To favor the attacker, it also contains a global function

pointer pointing to the attacker’s desired function. We compiled the application with

three different configurations: one unprotected, one protected with only randomization

and PicoXOM (as in Section 5.3.1), and one protected with full Randezvous. For the

two protected configurations, we further configured the application to match each of

the three different-sized MCUs in Table 5.2 as closely as possible. When running the

application, the script communicates with the board via a serial port and sends attack

payloads generated from the best strategies for the attacker for each configuration: di-

rect return-into-libc for the unprotected, Strategy 1c with return address corruption for

randomization plus PicoXOM, and Strategies 1c and 2b for Randezvous.

Our exploit finished immediately for the unprotected system as no guessing is

needed in Step 1 or 2. With randomization plus PicoXOM, the exploit finished in

15 seconds, 68 seconds, and 2,821 seconds for the small, medium, and large systems,

respectively. Most of time was spent trying out leaked values that resemble control

data. In contrast, the exploit failed in all three Randezvous-protected systems after

continuously sending attack payloads for three days.

Real-World CVE To demonstrate its efficacy against real-world exploits, we ana-

lyzed how Randezvous could stop attacks exploiting CVE-2021-27421 [75]. We picked

this CVE because
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1) it can both read from and write to arbitrary heap locations,

2) it affects applications using the NXP MCUXpresso SDK library, and

3) we can exploit it on our NXP MIMXRT685-EVK board [190].

CVE-2021-27421 [75] overflows a heap buffer. We built a demonstrative appli-

cation with the CVE for the small system in Table 5.2 and compiled it with similar

configurations to those used in our proof-of-concept exploit. We then launched a return-

into-libc attack on our board, which exploits the CVE to corrupt a pointer in the heap

to point to a memory location of our choice. The overwritten pointer is eventually

dereferenced. Our attack utilizes attack strategies that do not use buffer overread or

spraying (Strategy 1a with return address corruption for randomization plus PicoXOM

and Strategies 1a and 2a for Randezvous) because the application stores no return ad-

dress or function pointer to the attacker’s desired control flow target in memory and

because the exploit only corrupts four bytes of memory. Our attack exploited the unpro-

tected system immediately and the system protected by randomization plus PicoXOM

in 23.6 hours. In contrast, the attack failed on the Randezvous-protected system after

running for three days; we therefore expect Randezvous to resist the attack for more

than three days for the larger systems in Table 5.2.

5.6 Performance Evaluation

We evaluated Randezvous’s performance on an NXP MIMXRT685-EVK board which

has an ARM Cortex-M33 processor implementing the ARMv8-M Mainline architec-

ture that can run up to 300 MHz [190]. It comes with 4.5 MB of SRAM, 64 MB of flash

memory, a true random number generator (TRNG) that fulfills Randezvous’s CSPRNG

requirement, and an SD card slot [189, 190].

We used three benchmark suites and two real-world applications to evaluate Ran-

dezvous. BEEBS [195] is a benchmark suite to measure embedded systems’ energy
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usage. It includes a wide range of common MCU workloads (e.g., packet routing, sort-

ing, and hashing). As many BEEBS programs are too small or perform too little com-

putation, we picked 54 of its 80 programs that run longer than 0.1 seconds on our board

for 10,240 iterations. CoreMark-Pro [92] is a benchmark suite that includes and en-

hances CoreMark [91], an industry standard benchmark for embedded processors, with

more CPU- and memory-intensive programs. It consists of five integer benchmarks

and four floating-point benchmarks that together characterize processor performance.

MbedTLS-Benchmark [16] is a test program of the Mbed TLS library [15]. It mea-

sures the latency and throughput of various cryptographic algorithms (e.g., SHA, AES,

and RSA). PinLock [58] is an application that emulates a password-based lock. It

reads a 4-digit passphrase from a serial port, computes a SHA-256 hash of the input,

and activates an LED if the hash matches the stored passphrase hash. FatFs-SD is an

application from the board manufacturer. It operates a FAT file system on an SD card

with file system creation, mounting, and file I/O. Previous work [9, 59, 227, 229] used

PinLock and FatFs-SD.

We compiled each program into an ELF executable and loaded its code into the

SRAM for execution, using two configurations: Baseline and Randezvous. In Base-

line, we used the LLVM/Clang compiler [142] to compile programs with all Ran-

dezvous passes and runtime components disabled. In Randezvous, we enabled ev-

erything; all Randezvous’s randomization seeds are set to zero, and all memory size

options for Randezvous passes are set appropriately to allow execution in the SRAM

while still adding entropy to the program. In particular, the shadow stack size and

stride length were tailored to add one bit of entropy. Both configurations use the -Os

and -fomit-frame-pointer options and perform link-time optimization (LTO)

via the -flto and -fuse-ld=lld options.
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5.6.1 Performance Overhead

To measure Randezvous’s performance overhead, we configured each BEEBS bench-

mark to execute for 10,240 iterations of its workload and print out its execution time

in milliseconds. Each benchmark in CoreMark-Pro was configured to execute for a

minimal number of iterations that is a power of 10 and yields an execution time of at

least 10 seconds. MbedTLS-Benchmark measures latency and throughput with 1,024

iterations and 1 or 3 seconds, respectively. All benchmarks produced identical numbers

over multiple runs, yielding zero standard deviations. As PinLock and FatFs-SD access

slow peripherals, we ran each of them 10 times and report the average execution time

with a standard deviation.

Tables 5.4, 5.5, 5.7, 5.6, and 5.8 present Baseline performance in absolute numbers

as well as the overhead Randezvous incurs relative to Baseline on BEEBS, CoreMark-

Pro, MbedTLS-Benchmark, and the applications, respectively. Overall, Randezvous

incurs minor performance overhead of 5.9%: 6.9% in BEEBS, 7.0% in CoreMark-Pro,

4.5% in MbedTLS-Benchmark’s throughput, 5.5% in MbedTLS-Benchmark’s latency,

and 0.6% in the applications.

We studied the overhead by enabling only one of Randezvous’s features at a time.

We discovered that the diversified shadow stack and return address nullification trans-

formations are the major sources of overhead in BEEBS and CoreMark-Pro. Specif-

ically, the former reserves two registers and adds a few instructions in the prologue

and epilogue(s) of every non-leaf function. The latter adds a few more instructions in

those function epilogues. As a result, Randezvous incurred more overhead on bench-

marks with higher register pressure and more frequent function calls. MbedTLS-

Benchmark’s latency overhead on each algorithm roughly matches its throughput

overhead. The highest (in DES and 3DES) also comes from these transformations.

ECDSA-secp521r1 saw a miniscule speedup in signature verification, likely caused

by caching. Randezvous exhibits negligible runtime overhead in the applications. We
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Benchmark Baseline Randezvous Benchmark Baseline Randezvous
(ms) (×) (ms) (×)

aha-compress 627 1.011 nettle-cast128 103 1.019
aha-mont64 555 0.984 nettle-sha256 309 1.055
bubblesort 2,164 1.017 newlib-sqrt 104 1.010
crc32 463 1.000 ns 268 1.000
ctl-stack 381 1.037 nsichneu 207 1.005
ctl-string 341 1.117 picojpeg 28,879 1.065
ctl-vector 547 1.007 prime 304 1.056
cubic 20,807 1.168 qrduino 25,309 1.084
dijkstra 21,798 1.034 rijndael 24,462 1.005
dtoa 347 1.133 sglib-arraybinsearch 509 1.051
edn 2,071 1.020 sglib-arrayheapsort 609 1.002
fasta 14,502 1.000 sglib-arrayquicksort 381 1.097
fdct 110 1.018 sglib-dllist 1,111 1.094
fir 8,643 1.030 sglib-hashtable 687 1.262
frac 3,998 1.220 sglib-listinsertsort 1,247 1.124
huffbench 13,310 1.031 sglib-listsort 808 1.069
jfdctint 116 1.017 sglib-queue 713 1.000
levenshtein 1,757 1.085 sglib-rbtree 2,830 1.207
ludcmp 104 1.010 slre 1,465 1.146
matmult-float 781 1.013 sqrt 24,751 1.171
matmult-int 3,623 1.004 st 15,691 1.192
mergesort 15,058 1.147 stb perlin 3,736 1.207
miniz 336 1.006 stringsearch1 352 1.011
nbody 98,435 1.117 trio-snprintf 385 1.086
ndes 1,180 1.018 trio-sscanf 687 1.086
nettle-aes 1,893 1.130 whetstone 84,383 1.215
nettle-arcfour 579 1.040 wikisort 70,699 1.138

Min (×) 0.984
Max (×) 1.262
Geomean (×) 1.069

Table 5.4: Randezvous BEEBS Execution Time (Lower is Better)

believe this is due to I/O dominating the execution time.

5.6.2 Memory Overhead

Memory usage is critical for MCUs. We therefore measured how much memory Ran-

dezvous uses to provide its protections by calculating code and global data segment

sizes (without unused memory) before and after its transformations during compila-

tion.



104

Benchmark Baseline Randezvous Benchmark Baseline Randezvous
(ms) (×) (ms) (×)

cjpeg-rose7-preset 21,172 1.023 parser-125k 41,700 1.069
core 33,813 1.112 radix2-big-64k 15,363 1.177
linear alg-mid-100x100-sp 45,177 1.001 sha-test 17,220 1.046
loops-all-mid-10k-sp 73,085 1.010 zip-test 37,097 1.014
nnet test 183,048 1.195

Min (×) 1.001
Max (×) 1.195
Geomean (×) 1.070

Table 5.5: Randezvous CoreMark-Pro Execution Time (Lower is Better)

Cryptographic Baseline Randez- Cryptographic Baseline Randez-
Algorithm (cycle/byte) vous (×) Algorithm (cycle/byte) vous (×)

MD5 15.84 1.009 AES-GCM-256 113.37 1.084
SHA-1 3.47 1.009 AES-CCM-128 72.75 1.087
SHA-256 3.30 1.009 AES-CCM-192 75.54 1.081
SHA-512 109.40 1.022 AES-CCM-256 78.33 1.070
3DES 298.72 1.145 CTR DRBG (NOPR) 27.22 1.092
DES 117.32 1.145 CTR DRBG (PR) 47.12 1.071
AES-CBC-128 3.12 1.013 HMAC DRBG SHA-1 (NOPR) 181.58 1.039
AES-CBC-192 3.44 1.012 HMAC DRBG SHA-1 (PR) 200.18 1.040
AES-CBC-256 3.95 1.013 HMAC DRBG SHA-256 (NOPR) 153.25 1.034
AES-GCM-128 110.58 1.087 HMAC DRBG SHA-256 (PR) 153.25 1.034
AES-GCM-192 111.97 1.085

Min (×) 1.009
Max (×) 1.145
Geomean (×) 1.055

Table 5.6: Randezvous MbedTLS-Benchmark Latency (Lower is Better)

Tables 5.9 and 5.10 and Figure 5.3 show Randezvous’s code and data size overhead

on BEEBS, CoreMark-Pro, MbedTLS-Benchmark, and the two applications, respec-

tively. Overall, Randezvous incurs moderate overhead on both code and data sizes:

a geometric mean of 15.8% on code size and 21.2% on data size in BEEBS, 14.2%

and 27.5% in CoreMark-Pro, 10.8% and 11.9% in MbedTLS-Benchmark, and 13.6%

and 24.5% in the applications. We note that parser-125k in CoreMark-Pro exhibits

the highest data size overhead because its shadow stack is more than twice the size

of its original global data size to accommodate a function that calls itself over 2,000

times. Correspondingly, its stack usage decreases as none of its recursive stack frames
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Cryptographic Baseline Randez- Cryptographic Baseline Randez-
Algorithm vous (×) Algorithm vous (×)

MD5 (KB/s) 14,630.25 0.981 HMAC.. SHA-1 (NOPR) (KB/s) 1,339.78 0.962
SHA-1 (KB/s) 56,491.74 0.958 HMAC.. SHA-1 (PR) (KB/s) 1,215.91 0.961
SHA-256 (KB/s) 58,746.89 0.956 HMAC.. SHA-256 (NOPR) (KB/s) 1,585.92 0.967
SHA-512 (KB/s) 2,216.21 0.978 HMAC.. SHA-256 (PR) (KB/s) 1,585.94 0.967
3DES (KB/s) 816.31 0.874 RSA-1024 (public/s) 1,420.58 0.987
DES (KB/s) 2,067.83 0.873 RSA-1024 (private/s) 14.92 0.975
AES-CBC-128 (KB/s) 61,610.23 0.950 DHE-2048 (handshake/s) 0.94 0.979
AES-CBC-192 (KB/s) 56,954.36 0.954 DH-2048 (handshake/s) 1.18 0.975
AES-CBC-256 (KB/s) 50,861.98 0.958 ECDSA-secp521r1 (sign/s) 7.69 0.986
AES-GCM-128 (KB/s) 2,192.97 0.919 ECDSA-secp384r1 (sign/s) 13.05 0.968
AES-GCM-192 (KB/s) 2,165.85 0.921 ECDSA-secp256r1 (sign/s) 28.39 0.960
AES-GCM-256 (KB/s) 2,139.37 0.922 ECDSA-secp521r1 (verify/s) 5.66 1.011
AES-CCM-128 (KB/s) 3,319.83 0.919 ECDSA-secp384r1 (verify/s) 12.21 0.965
AES-CCM-192 (KB/s) 3,198.46 0.924 ECDSA-secp256r1 (verify/s) 27.09 0.957
AES-CCM-256 (KB/s) 3,085.67 0.934 ECDHE-secp521r1 (handshake/s) 4.46 0.991
CTR DRBG (NOPR) (KB/s) 8,699.62 0.913 ECDHE-secp384r1 (handshake/s) 7.52 0.975
CTR DRBG (PR) (KB/s) 5,092.05 0.932 ECDHE-secp256r1 (handshake/s) 16.44 0.970

ECDH-secp521r1 (handshake/s) 8.62 0.991
ECDH-secp384r1 (handshake/s) 14.71 0.975

Min (×) 0.873
Max (×) 1.011
Geomean (×) 0.955

Table 5.7: Randezvous MbedTLS-Benchmark Throughput (Higher is Better)

Application Baseline (ms) Stdev (ms) Randezvous (×) Stdev (×)

PinLock 46,429.5 108.8 1.009 0.001
FatFs-SD 14,965.3 47.6 1.003 0.003

Geomean — — 1.006 —

Table 5.8: Randezvous Application Execution Time (Lower is Better)

contains a return address slot.

Breaking down the overhead, the code size overhead comes from PicoXOM (3.2%–

5.5%), function prologue/epilogue transformations (4.6%–7.0%), and runtime compo-

nents that set up the shadow stack and a single global guard (1,356 bytes). The data

size overhead comes from string literals used in additional code (1,389 bytes), a diversi-

fied shadow stack (48–19,040 bytes), and promoted local variables containing function

pointers (0–5.0%).
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Benchmark Baseline Baseline Randezvous Randezvous
Code (bytes) Data (bytes) Code (×) Data (×)

aha-compress 60,834 4,867 1.160 1.295
aha-mont64 61,914 4,652 1.158 1.309
bubblesort 60,616 5,453 1.161 1.264
crc32 60,474 5,672 1.161 1.253
ctl-stack 60,962 12,851 1.160 1.112
ctl-string 61,352 13,188 1.162 1.109
ctl-vector 61,518 12,855 1.157 1.112
cubic 62,864 4,619 1.161 1.318
dijkstra 60,906 14,139 1.161 1.102
dtoa 67,260 15,745 1.148 1.091
edn 61,476 7,852 1.160 1.183
fasta 60,710 5,063 1.162 1.284
fdct 61,070 5,027 1.160 1.286
fir 60,544 7,565 1.161 1.190
frac 61,030 4,723 1.160 1.304
huffbench 61,700 12,860 1.159 1.112
jfdctint 61,090 5,159 1.160 1.279
levenshtein 60,808 4,709 1.161 1.305
ludcmp 61,156 5,321 1.159 1.270
matmult-float 60,784 6,252 1.161 1.230
matmult-int 60,730 11,050 1.161 1.130
mergesort 61,476 6,288 1.162 1.229
miniz 75,260 19,584 1.133 1.079
nbody 60,952 5,284 1.160 1.272
ndes 61,648 6,158 1.158 1.233
nettle-aes 62,338 15,899 1.157 1.090
nettle-arcfour 60,654 5,023 1.162 1.286
nettle-cast128 64,616 8,882 1.152 1.162
nettle-sha256 63,392 5,060 1.156 1.284
newlib-sqrt 60,932 4,704 1.161 1.305
ns 60,520 9,641 1.161 1.149
nsichneu 71,336 4,715 1.137 1.305
picojpeg 67,436 7,698 1.149 1.187
prime 60,636 4,656 1.160 1.309
qrduino 68,156 14,446 1.145 1.099
rijndael 67,854 9,912 1.144 1.145
sglib-arraybinsearch 60,508 5,063 1.161 1.284
sglib-arrayheapsort 60,628 5,433 1.161 1.264
sglib-arrayquicksort 60,724 5,434 1.160 1.264
sglib-dllist 61,172 13,226 1.160 1.110
sglib-hashtable 60,844 13,309 1.162 1.110
sglib-listinsertsort 60,748 13,259 1.161 1.110
sglib-listsort 60,866 13,253 1.160 1.108
sglib-queue 60,682 5,050 1.160 1.285
sglib-rbtree 61,386 13,251 1.160 1.162
slre 63,144 5,019 1.158 1.293
sqrt 60,642 4,643 1.161 1.309
st 61,266 6,269 1.161 1.229
stb perlin 61,240 7,328 1.160 1.196
stringsearch1 61,354 9,385 1.159 1.153
trio-snprintf 64,246 4,992 1.157 1.295
trio-sscanf 64,842 5,578 1.155 1.264
whetstone 62,652 4,743 1.159 1.306
wikisort 64,868 7,862 1.155 1.183

Min 60,474 4,619 1.133 1.079
Max 75,260 19,584 1.162 1.318
Geomean — — 1.158 1.212

Table 5.9: Randezvous BEEBS Memory Usage (Lower is Better)
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Benchmark Baseline Baseline Randezvous Randezvous
Code (bytes) Data (bytes) Code (×) Data (×)

cjpeg-rose7-preset 104,978 51,802 1.135 1.039
core 72,852 8,451 1.151 1.184
linear alg-mid-100x100-sp 75,046 8,839 1.148 1.176
loops-all-mid-10k-sp 84,440 12,624 1.146 1.125
nnet test 75,218 48,734 1.147 1.033
parser-125k 80,808 7,266 1.137 3.855
radix2-big-64k 74,196 1,383,731 1.149 1.001
sha-test 77,368 5,887 1.139 1.264
zip-test 91,910 20,347 1.128 1.084

Min 72,852 5,887 1.128 1.001
Max 104,978 1,383,731 1.151 3.855
Geomean — — 1.142 1.275

Table 5.10: Randezvous CoreMark-Pro Memory Usage (Lower is Better)
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Figure 5.3: Randezvous MbedTLS-Benchmark and Application Memory Usage
(Lower is Better)

5.7 Related Work

5.7.1 Randomization on General-Purpose Systems

Randomization on general-purpose systems is well studied. The original ASLR [30,

201] loads memory sections at random addresses and is widely deployed. Due to its

coarse granularity and lack of entropy on 32-bit systems, researchers have focused on

fine-grained code randomization at the level of pages [26], functions [31, 65, 108, 134],

basic blocks [137, 263], instructions [83, 119, 196], register allocation [65, 196], ex-
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ecution paths [82], or tunable sizes [206]. Fine-grained data randomization has been

explored as well, including global data object reordering [31], data representation en-

cryption [29, 44], structure field randomization [48, 66, 108, 150], stack randomiza-

tion [5, 31, 50, 145], and heap randomization [28, 188]. While most of these techniques

can be used on MCUs, Randezvous leverages just a few of them with the best efficacy

and the least performance impact.

Leakage-resistant randomization for general-purpose systems, such as Readac-

tor [65], ASLR-Guard [167], LR2 [38], and kRˆX [205], hide code pointers via in-

direction or encryption. These systems are still susceptible to control data leakage;

despite not knowing where code is located, attackers can identify indirect or encrypted

code pointers from disclosed memory and reuse them to corrupt control data slots.

Randezvous’s decoy pointers, in contrast, prevent attackers from identifying real code

pointers from decoy pointers; using a leaked pointer risks causing a trap.

Runtime rerandomization shortens the window for successful exploitation and can

be done manually at runtime [53], periodically [6, 100, 108, 209, 266], at certain system

calls [32, 168, 259], and when detecting suspicious probes [260]. Randezvous uses no

runtime rerandomization as its additional resource consumption outweighs its security

gain (as Section 5.3.1 describes).

5.7.2 Randomization on MCUs

Previous work has employed randomization for MCUs. µArmor [3] and EPOXY [59]

employ compile-time code layout randomization; EPOXY [59] also randomizes data

layout at compile time. AVRAND [199] and MAVR [116] proposed boot-time code

layout randomization for AVR MCUs. Both solutions randomize code and repro-

gram the flash memory at every reboot, using a trusted bootloader reading meta-

data from EEPROM or a separate processor with extra flash memory. Compared

to Randezvous, all of the above systems assume a weaker threat model and, there-
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fore, do not mitigate information leakage. Consequently, attackers can still locate

code and launch code reuse attacks on these systems using information leaked from

code [230] or data [65, 82, 204, 214]. It is also unclear if these systems can re-

sist brute force attacks effectively; they omitted modeling such attacks [3, 59, 199]

or yielded an outrageously large number of guesses by incorrectly assuming that at-

tackers have to guess the locations of all functions in the program before launching

an attack [116]. HARM [229] implements function-level periodical code rerandomiza-

tion using TrustZone-M on ARMv8-M [23], requiring more than twice the memory.

fASLR [169] uses TrustZone-M to dynamically load functions to random addresses in

RAM when being called and unload finished ones when out of RAM, thus reducing

memory usage of rerandomization. Unlike HARM and fASLR, Randezvous requires

no TrustZone-M and thus supports ARMv7-M systems. While runtime rerandomiza-

tion reduces the window of code reuse attacks, a successful exploit equipping memory

disclosure to learn the code layout is still possible, especially where rerandomization

may not take place frequently (e.g., fASLR [169]).

As to performance, AVRAND [199] and MAVR [116] only present startup overhead

in absolute numbers; comparing to Randezvous is impossible. EPOXY shows better

performance in BEEBS (1.6% on average) than Randezvous because its safe stack [140]

improves locality. For BEEBS programs that both Randezvous and HARM [229] eval-

uate (all 19 programs by HARM), Randezvous outperforms HARM (8.8% vs. 25%, on

average). Similarly, in BEEBS programs shared between Randezvous and fASLR [169]

(5 programs out of 9 by fASLR), Randezvous is slightly faster (2.3% vs. 3.7%, on av-

erage).

5.7.3 CFI on MCUs

An alternative to randomization is to use CFI [2] and/or protected shadow stacks [43].

To protect shadow stacks, CaRE [191] and TZmCFI [130] leverage TrustZone-M [23],
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RECFISH [255] utilizes privilege mode switching, and Silhouette [282] and Kage [90]

utilize ARM’s unprivileged store instructions. µRAI [9] encodes return addresses in a

reserved register and uses system calls to extend the encoding space. All these solutions

enforce return address integrity and use coarse-grained forward-edge CFI [2], while

SCFP [264] extends a RISC-V MCU with a stateful instruction encryption scheme for

fine-grained CFI. However, even with a fully precise static CFG and a protected shadow

stack, CFI is still vulnerable to advanced forward-edge corruptions that adhere to the

CFG [46, 96]. In contrast, Randezvous provides probabilistic guarantees but is not

susceptible to such attacks without identifying both a control flow target and a control

data slot.

Performance-wise, Randezvous outperforms all the above CFI implementations ex-

cept Silhouette and Kage. We believe Silhouette’s low overhead (3.4% on BEEBS and

1.3% on CoreMark-Pro) is due to the high latency of the SDRAM in its STM32F469

Discovery board [282]; we evaluated Silhouette on our NXP MIMXRT685-EVK board

(which uses SRAM), and its overhead increases to 12.1% on BEEBS and 11.2% on

CoreMark-Pro.



111

Chapter 6

Efficient Control-Flow Protection

for AArch64 Applications

6.1 Introduction

AArch64 (64-bit ARM) processors are becoming increasingly popular, not only in em-

bedded and mobile platforms but also in personal computers [14] and high-performance

servers and data centers [11, 111, 176, 194]. Given the popularity of AArch64 proces-

sors used in production and in our daily lives, securing software on such systems is crit-

ical. In particular, a large portion of AArch64 application code is written in memory-

unsafe programming languages (e.g., C and C++) and is vulnerable to control-flow

hijacking attacks [213, 248] that exploit memory safety errors. While basic code injec-

tion attacks are prevented by the wide deployment of the W⊕X [200] policy, which

disallows memory to be writable and executable at the same time, advanced code-

reuse attacks like return-oriented programming (ROP) [213, 223] and jump-oriented

programming (JOP) [35] are still possible. These attacks hijack a program’s control

flow by corrupting code pointers (e.g., return addresses and function pointers) to point

to reusable code of the attacker’s choosing. Worse yet, recent research [61] has demon-

strated automation of ROP attacks on AArch64, necessitating effective and practical

defenses to be deployed.
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Control-flow integrity (CFI) [1, 2], a seminal mitigation to control-flow hijacking

attacks, restricts a program’s control flow to follow its intended control-flow graph.

While ineffective by itself [45, 62, 80, 109], CFI necessitates a mechanism that protects

the integrity of return addresses, such as write-protected shadow stacks [43, 55], to

form an effective defense [46]. However, software approaches to protecting return

address integrity either suffer from high performance overhead (e.g., software-based

shadow stacks [55, 63, 98, 255, 282]) or only provide probabilistic guarantees (e.g.,

information hiding [43, 202, 228, 284]). Hardware-assisted shadow stack protection,

such as Control-flow Enforcement Technology (CET) [225] on x86, offers the best

security and performance but is not natively available on AArch64.

In this chapter, we present InversOS, a system that provides AArch64 user-space

applications with hardware-assisted write-protected shadow stacks. InversOS does so

without requiring the most recent hardware security features on AArch64 or modifying

hardware. Instead, InversOS uses two widely available AArch64 features [22], namely

unprivileged load/store instructions and Privileged Access Never, in a novel way to cre-

ate an efficient domain-based instruction-level intra-address space isolation technique

which we call Privilege Inversion. With Privilege Inversion, InversOS runs protected

applications in the same privilege mode as an operating system (OS) kernel, sets up

incorruptible shadow stack memory accessible only by unprivileged load/store instruc-

tions, and ensures the safety of running privileged user-space code via a combination

of OS kernel modifications and compiler transformations. To keep compatibility with

legacy untransformed application binaries, InversOS repurposes another AArch64 fea-

ture to support coexistence of legacy and protected applications securely and efficiently.

We built a prototype implementation of InversOS based on the Linux kernel

v4.19.219 [152] and the LLVM/Clang compiler v13.0.1 [142]. We analyzed the se-

curity of InversOS and assessed the strength of its defense against different types of

control-flow hijacking attacks. Our evaluation of InversOS on a real AArch64 system

and a comprehensive set of benchmarks and applications (LMBench [172], SPEC CPU
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2017 [232], and Nginx [244]) shows low performance overhead (7.0% on LMBench,

7.1% on SPEC CPU 2017, and 3.0% on Nginx), indicating that InversOS is practical

for deployment. We open-sourced InversOS at https://github.com/URSec/I

nversOS.

To summarize, we make the following contributions:

• We present Privilege Inversion, the first domain-based intra-address space isola-

tion technique for AArch64 user-space applications, using only widely available

features on commodity hardware.

• We designed and implemented InversOS, an OS-kernel-compiler co-design that

provides the first hardware-assisted protected shadow stacks on AArch64 utiliz-

ing Privilege Inversion and is compatible with existing binaries.

• We evaluated the security and performance of InversOS and showed that Inver-

sOS is both efficacious and efficient.

The rest of the chapter is organized as follows. Section 6.2 provides background

information on protected shadow stacks. Section 6.3 defines our threat model. Sec-

tions 6.4 and 6.5 describe the design and implementation of InversOS, respectively.

Section 6.6 analyzes the security of InversOS, Section 6.7 presents the performance

evaluation of InversOS, and Section 6.8 discusses related work.

6.2 Protected Shadow Stacks

Control-flow hijacking attacks like ROP [213, 223] corrupt saved return addresses on

the stack. One way to mitigate such attacks is to use shadow stacks [43], which keep

copies of return addresses in separate memory regions. When calling a function, a

return address is pushed onto both the regular stack and the shadow stack; on return,

the program loads the return address from the shadow stack and either compares it

https://github.com/URSec/InversOS
https://github.com/URSec/InversOS
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to the one on the regular stack to ensure its validity [55, 77, 78] or jumps to the value

loaded from the shadow stack directly [2, 112, 228, 282, 284]. To enforce return address

integrity, however, shadow stacks themselves require protection that disallows illegal

modifications. Prior approaches to protecting shadow stack integrity rely on system

calls [55, 98, 255], software fault isolation (SFI) [63, 282], information hiding [43, 202,

228, 284], or special hardware such as segmentation [2], Memory Protection Extensions

(MPX) [43, 122, 128], Memory Protection Keys (MPK) [43, 112], and CET [225]).

To the best of our knowledge, no hardware-assisted shadow stack protection exists on

AArch64.

6.3 Threat Model

We assume a powerful attacker trying to achieve arbitrary code execution on a benign

but potentially buggy application by exploiting arbitrary memory read/write vulnerabil-

ities to hijack the control flow. We assume that the underlying OS kernel and hardware

are trusted and unexploitable, providing the user space with the basic W⊕X protec-

tion [200]. Non-control data attacks [49] (such as data-oriented programming [120]

and block-oriented programming [125]), side-channel attacks, and physical attacks are

out of scope. This threat model is in line with recent work on user-space control-flow

hijacking attacks [61, 62] and defenses [43, 146, 149, 258].

6.4 Design

In this section, we present the design of InversOS. The goal of InversOS is to pro-

vide low-cost return address integrity to user-space applications running on commodity

AArch64 systems, which may or may not come with the most recent hardware security

features such as Pointer Authentication (PAuth), Branch Target Identification (BTI),

and Memory Tagging Extension (MTE) [22]. To do so, InversOS must only rely on
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AArch64 features from the early ISA versions. We therefore require InversOS’s target

platform to support at least PAN and HPDS (i.e., conforming to ARMv8.1-A [22]); this

allows InversOS to be deployed on most of AArch64 systems released since 2017 [265].

Overall, we devise InversOS as a co-design between an OS kernel and a compiler.

The InversOS-compliant OS kernel utilizes Privilege Inversion, a novel intra-address

space isolation technique we invented, to provide user-space applications an extra pro-

tection domain accessible only by LSU instructions. The InversOS-compliant compiler

then instruments user-space code to leverage the protection domain for efficient pro-

tected shadow stacks as well as to enforce forward-edge CFI [1, 2], allowing InversOS

to protect user-space applications without modifying their source code. The nature of

Privilege Inversion dictates running user-space applications in the privileged mode; we

therefore combine CFI, a compile-time bit-masking compiler pass, a load-time code

scanner in the OS kernel, and a set of kernel modifications to together ensure the safety

and security of doing so. Lastly, InversOS supports running legacy untransformed ap-

plications to keep compatibility with existing binaries via a novel use of HPDS or E0PD

(if available).

6.4.1 Privilege Inversion

LSU instructions in AArch64, as described in Section 2.2.3, show a great potential in

implementing efficient intra-address space isolation; previous work [56] has explored

their usage in kernel-level data isolation. However, using these instructions to compart-

mentalize user-space applications poses challenges as they act like regular loads/stores

when executed in the unprivileged mode. Essentially the underlying hardware only

supports one protection domain for unprivileged software.

We devise Privilege Inversion, a novel intra-address space isolation technique that

creates a separate protection domain for AArch64 user-space applications. With Privi-

lege Inversion, the OS kernel runs a user-space application needing an extra protection
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Elevated Task
(Privileged, PAN=1, UAO=0) Unprotected Pages 

(Privileged, AP[1]=0)

Protected Pages
(Unprivileged, AP[1]=1)

LDR/STR

LDTR/STTR

√

×
√

×

Figure 6.1: Compartmentalization by Privilege Inversion

domain in the privileged mode. We dub such an application as an elevated task. When

launching an elevated task, the OS kernel configures its memory pages as unprivileged-

inaccessible (i.e., with AP[1] cleared in PTEs), marks its code pages as privileged-

executable (i.e., with PXN cleared and UXN set in PTEs), and enables PAN during its

execution. Then, pages that the elevated task wants to place in the separate protection

domain are marked as unprivileged-accessible (i.e., with AP[1] set in PTEs). Note that

the elevated task’s pages are still mapped to the user space (translated by TTBR0 EL1);

the above changes only apply to their access permission bits in the PTEs. This config-

uration allows LSU instructions in elevated task code to access the protected pages but

forbids accesses to them made by all regular loads/stores due to PAN. In the meanwhile,

it leaves all other unprotected pages in the elevated task accessible by regular loads/s-

tores but inaccessible by LSU instructions, effectively compartmentalizing the elevated

task into two separate protection domains (one for regular loads/stores and the other for

LSU instructions), as Figure 6.1 shows. Note that in systems with UAO support, UAO

has to be turned off during elevated task execution; otherwise LSU instructions would

act just like regular loads/stores.

However, in order to make Privilege Inversion safe and useful, we need to address

the following challenges:

Challenge 6.1. As elevated tasks run in the privileged mode, kernel memory becomes

accessible by their regular loads/stores.

Challenge 6.2. As elevated tasks run in the privileged mode, their control-flow transfer
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instructions can jump to the kernel space to execute arbitrary kernel code (i.e., kernel

memory with PXN cleared).

Challenge 6.3. As elevated tasks run in the privileged mode, they may contain and

execute special privileged instructions that would only be allowed to execute in kernel

code (e.g., instructions that flip PSTATE.PAN).

To address Challenge 6.1, we incorporate a set of kernel modifications that mark

all kernel memory as unprivileged-accessible and disable PAN during kernel execu-

tion. Such modifications, while radical in idea, effectively stop regular loads/stores in

elevated tasks from accessing kernel memory and still keep the OS kernel functional.

The ramifications of modifying the OS kernel in this way are two folds. First, LSU

instructions in elevated tasks can now access kernel memory. We therefore require that

elevated tasks not contain LSU instructions by themselves (which is the case in C/C++

code compiled by GCC or LLVM/Clang) and use a compiler pass to insert vetted LSU

instructions for enforcing the desired protection policies. Our shadow stack pass de-

scribed in Section 6.4.2 provides a good example. Second, if we are to support running

legacy untransformed applications in the unprivileged mode still, they can access kernel

memory as well; Section 6.4.3 discusses how we tackle this problem.

To address Challenge 6.2, we use a bit-masking compiler pass, which instruments

all indirect control-flow transfer instructions (i.e., indirect calls, indirect jumps, and

returns) in elevated tasks by preceding them with a bit-masking instruction that clears

the top bit of the target register.8 This limits the control-flow transfer target to be within

the user space or to become an invalid pointer pointing to the user-kernel space gap.

Such instrumentation alone, however, can be bypassed by attacker-manipulated control

flow that jumps over the bit-masking instruction; we therefore combine it with CFI to

ensure its execution, which we discuss in Section 6.4.2. Note that direct control-flow

8AArch64 returns via the RET instruction, which uses the link register LR (by default) or another
explicitly specified register as the return address [22].
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transfer instructions (i.e., direct calls and jumps) do not need such instrumentation;

their target is PC-relative and always points to a known location within the user space.

To address Challenge 6.3, we add to the OS kernel a load-time code scanner

which scans for privileged instructions that unprivileged software should never exe-

cute. Whenever a page in an elevated task is being marked as executable, the OS

kernel invokes our code scanner to scan the whole page; if the page contains any for-

bidden privileged instruction, the execution permission of the whole page is denied. As

AArch64 instructions are 4-byte sized and aligned [22], a linear non-overlapping scan

should suffice.

6.4.2 Protected Shadow Stacks and Forward-Edge CFI

With Privilege Inversion creating an extra protection domain, we can now leverage

the protection domain to enforce efficient shadow stack protection for the user space.

Specifically, the OS kernel allocates unprivileged memory for a shadow stack when a

new elevated task is launched via exec() or when a new thread in an elevated task

is created via clone(). The compiler utilizes a shadow stack pass to instrument

elevated task code; a copy of the return address is saved onto a shadow stack via an

STTR instruction inserted into the prologue of functions that save the return address to

the regular stack, and the return address is loaded from the shadow stack via an LDTR

instruction inserted into the epilogue(s) of these functions. A special case for shadow

stacks to handle is irregular control flow such as setjmp()/longjmp() in C and

exception handling in C++. Since support for such irregular control flow depends on

the specific shadow stack scheme used [43], we discuss how our InversOS prototype

supports such code constructs in Section 6.5.2.

To form a complete control-flow protection, we couple our shadow stacks with

forward-edge CFI [1, 2], which ensures that the target of indirect calls and jumps is

within a set of allowed code locations. Specifically, we use a label-based CFI pass in



119

the compiler. For each indirect call or tail-call indirect jump in elevated task code, the

pass inserts a CFI label at the beginning of every function that might be the call target

and inserts a CFI check before the call. Similarly, for each non-tail-call indirect jump

in elevated task code, the pass inserts a CFI label at the beginning of every successor

basic block and inserts a CFI check before the jump. The CFI check ensures that a

proper CFI label is present at the control-flow target; otherwise it generates a fault and

traps the execution.

6.4.3 Compatibility

Not all AArch64 user-space applications need a separate protection domain, nor can

all of them be recompiled. InversOS must therefore allow existing application and li-

brary binaries that are not compiled by the InversOS-compliant compiler to run without

compromising its security.

We propose two methods to allow safe execution of legacy applications in the un-

privileged mode (dubbed as legacy tasks), depending on hardware feature availability.

In systems with E0PD support (ARMv8.5-A and onward), the OS kernel can directly

enable E0PD via setting TCR EL1.E0PD1 during legacy task execution. This way,

even though kernel memory is marked unprivileged-accessible, legacy tasks running in

the unprivileged mode still cannot access kernel memory translated by TTBR1 EL1.

In pre-ARMv8.5-A systems without E0PD support, however, we rely on HPDS to

provide a less-efficient solution. Specifically, the OS kernel first sets APTable[0]

in all top- and mid-level PTEs of kernel memory when establishing page tables for

the kernel space. This effectively marks all kernel pages as unprivileged-inaccessible

even if AP[1] in their last-level PTEs is set. Then, the OS kernel enables HPDS

via setting TCR EL1.HPD1 before running an elevated task, disables HPDS via clear-

ing TCR EL1.HPD1 before running a legacy task, and flushes the local TLBs every

time after flipping TCR EL1.HPD1. This way, legacy and elevated tasks will possess
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Figure 6.2: Different “Views” of Kernel Memory Due to HPDS

different “views” of kernel memory, as Figure 6.2 depicts. Specifically, legacy tasks

see kernel memory as unprivileged-inaccessible due to APTable[0] being set, while

elevated tasks see kernel memory as unprivileged-accessible because HPDS disables

APTable[0] in top- and mid-level PTEs and AP[1] in last-level PTEs takes effect.

As a result, both types of tasks cannot access kernel memory.

Note that relying on HPDS prevents the OS kernel from mapping kernel memory

with the largest huge pages on certain systems (e.g., 1 GB huge pages with a page size

of 4 KB and a 39-bit virtual address space), because such pages have no top- or mid-

level PTEs for setting APTable[0]. However, we believe this has no practical impact

on the OS kernel’s address translation and memory usage; the use of the largest huge

pages is rare and infrequent.

6.5 Implementation

We implemented a prototype of InversOS on the Linux kernel v4.19.219 [152] and the

LLVM/Clang compiler v13.0.1 [142]. Using Tokei v12.1.2 [269], our kernel modifica-

tions include 1,815 lines of C code and 207 lines of assembly code, and our changes
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to LLVM contain 1,003 lines of C++ code. To provide complete and transparent In-

versOS support for user-space applications, we also modified the musl libc v1.2.2 [97]

and LLVM’s LLD linker [164], compiler-rt builtin runtime library [161], and libun-

wind [159], totalling 27 lines of C code, 131 lines of C++ code, and 299 lines of as-

sembly code.

6.5.1 OS Kernel Modifications

Privilege Inversion requires running elevated tasks in the privileged mode. As Linux

does not use the privileged thread mode (as Section 2.2.1 describes), our prototype

therefore utilizes it to run elevated tasks. This way, the Linux kernel can keep using

the privileged handler mode for its own operations without interference from elevated

tasks. It also greatly simplifies our implementation. To enable the privileged thread

mode, our prototype enables an unused set of exception vectors that are responsible

for taking exceptions from the privileged thread mode to the privileged handler mode.

Changes were also made to Linux’s existing AArch64 exception handler code so that

our prototype can reuse most of the code to handle exceptions from the privileged thread

mode and to resume elevated task execution properly. Note that elevated tasks in our

prototype still use the SVC instruction for system calls, which is unnecessary because

elevated tasks are already privileged; we leave system call optimizations as future work.

Apart from the architectural usage of AP[1], Linux also uses AP[1] to distin-

guish whether a page is kernel or user memory. As InversOS marks kernel memory

unprivileged-accessible, AP[1] can no longer serve for that purpose. Our prototype

therefore utilizes an unused bit (bit 63) in last-level PTEs to differentiate between kernel

and user memory; the hardware MMU ignores this bit automatically [22].

When launching a new task, InversOS must decide whether it should be run as

a legacy or elevated task. For simplicity and ease of implementation, our prototype

checks the presence of an environment variable INVERSOS=1 to make such a decision;
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Instruction Description

MRS∗/MSR∗ Read/Write System Register
IC∗/DC∗ Invalidate Instruction/Data Cache
TLBI Invalidate Translation Lookaside Buffer
HVC Hypervisor Call
SMC Secure Monitor Call
AT Address Translation
ERET Exception Return
CFP/CPP/DVP Prediction Restriction
LDGM/STGM/STZGM Load/Store Tag Multiple (MTE)
BRB Branch Record Buffer
SYS/SYSL Other System Instructions
∗ Instructions with Certain Operands Allowed

Table 6.1: Forbidden Privileged Instructions by InversOS Code Scanner

if it is present, the task is started as an elevated task. Production systems can use a more

enhanced mechanism (e.g., checking the presence of a code signature generated by an

InversOS-compliant compiler) to qualify an elevated task.

The load-time code scanner, as part of our kernel modifications, scans for illegal

privileged instructions in elevated task code. Instead of directly scanning a user-space

code page, our prototype maps the page to the kernel space for scanning in order to

avoid frequently calling get user(). Table 6.1 lists all types of privileged instruc-

tions that our prototype forbids, which roughly correspond to instructions that would

generate a fault when executed in the unprivileged mode but might not when executed

in the privileged mode [22]. In particular, MRS/MSR/IC/DC instructions with certain

operands (e.g., reading the unprivileged thread ID register TPIDR EL0 via MRS) are

allowed in unprivileged software, so these instructions are also permitted in elevated

tasks.

Our kernel modifications take responsibility of setting up and tearing down mem-

ory for protected shadow stacks in elevated tasks, as Section 6.4.2 describes. Each

shadow stack region in an elevated task can grow as much as a regular stack can grow,

supporting both parallel and compact shadow stack schemes [43]. To prevent shadow

stack overflow and underflow, each shadow stack region is surrounded by two guard
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sub sp,  sp, #32
stp x29, lr, [sp, #16]
...
ldp x29, lr, [sp, #16]
add sp,  sp, #32
ret

sub  x28, x28, #8
sttr lr,  [x28]

ldtr lr,  [x28]
add  x28, x28, #8

sub  sp,  sp,  #32

stp  x29, lr,  [sp, #16]
...
ldp  x29, lr,  [sp, #16]

add  sp,  sp,  #32
ret

Figure 6.3: InversOS’s Shadow Stack Transformations

regions inaccessible by both regular loads/stores and LSU instructions. Mappings of

shadow stack and guard regions are unmodifiable by munmap(), mremap(), and

mprotect() requests from the user space.

Lastly, our prototype implements the HPDS support for running legacy tasks, as

described in Section 6.4.3. We omitted implementing the E0PD alternative due to the

lack of hardware that supports E0PD. As Linux has introduced support for E0PD since

v5.6 [151] (which is enabled by default), a simple backport of the relevant changes

would suffice.

6.5.2 Compiler, Linker, and Library Modifications

We implemented the shadow stack, forward-edge CFI, and bit-masking compiler passes

in a single LLVM pass that transforms LLVM machine intermediate representation

(IR).

Our shadow stack transformations adopt the compact shadow stack scheme [43]

and reserve the X28 register (a callee-saved register) as the shadow stack pointer reg-

ister. Figure 6.3 demonstrates our shadow stack transformations performed on a func-

tion’s prologue and epilogue. Our prototype supports C’s setjmp()/longjmp()

functions and C++ exception handling via modifications to the musl libc and LLVM’s

libunwind, respectively. Instead of directly guaranteeing the integrity of return

address saved by setjmp() or unw getcontext(), our prototype provides
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bti  c ; 0xd503245f

ldr  w1, [x8]
mov  w2, #0x245f
movk w2, #0xd503, lsl #16
eor  w1, w1, w2
cbnz w1, trap

udf  #0

foo:

bar:

trap:

...

...

blr  x8
...

...

...
blr x8
...

foo:
bar:

Figure 6.4: InversOS’s Forward-Edge CFI Transformations

shadow stack pointer integrity when restoring the saved context in longjmp() or

libunwind Registers arm64 jumpto(). Specifically, rather than overriding

X28 with the saved value, we unwind X28 step by step until a matched return address

is found or it reaches a guard region to cause shadow stack underflow.

Our forward-edge CFI transformations use the BTI instructions as CFI labels to

keep forward compatibility with ARMv8.5-A’s BTI [22], a hardware-assisted forward-

edge CFI mechanism rolling out to new AArch64 processors. Processors not supporting

BTI execute a BTI instruction as a no-operation. An appropriate CFI check is inserted

before every indirect call or jump to ensure that the target contains a correct CFI label

(BTI C for indirect calls and tail-call indirect jumps and BTI J for non-tail-call in-

direct jumps). Figure 6.4 illustrates our forward-edge CFI transformations performed

on an indirect call and one of its target functions. On AArch64, a non-tail-call indirect

jump can only be generated from a switch or computed goto statement; the former is

bounds-checked against a read-only jump table, and our prototype restricts the latter by

transforming it to a switch statement using the IndirectBrExpandPass [163].

Consequently, a non-tail-call indirect jump is limited to jump within its function and

cannot branch to other functions.

Our bit-masking transformation inserts an AND instruction before every indirect

call, indirect jump, or return to clear the top bit of control-flow transfer target. For
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indirect calls and jumps, the instruction is placed after the CFI check.

While our all-in-one LLVM machine IR pass transforms most of elevated task code,

it fails to cover certain pieces of code in the user space when compiling the application.

One piece of untransformed code is the procedure linkage table (PLT) generated by

the linker. We therefore also modified LLD to be able to generate CFI-checked and

bit-masked PLT code. Another piece of untransformed code is Linux’s virtual dynamic

shared object (vDSO); it is compiled with the Linux kernel and stored within the ker-

nel’s read-only data. We therefore applied our compiler transformations to the vDSO

as well during kernel compilation. The last case is assembly code (including assembly

files and inline assembly statements). We manually instrumented assembly code in the

musl libc and compiler-rt builtin runtime library.

6.5.3 Discussion

Virtualization Host Support ARMv8.1-A adds Virtualization Host Extensions

(VHE) [22] to accelerate hosted (Type 2) hypervisors such as Linux’s KVM [76] and

FreeBSD’s bhyve [93]. In pre-VHE systems, a host OS kernel (running in EL1) needs

to partition its hypervisor into a “high-visor” (running in EL1) and a “low-visor” (run-

ning in EL2) and thus incurs heavy overhead when context-switching between the two

parts. VHE allows the host OS kernel to run entirely in EL2 to reduce the cost. The

Linux kernel, as of v4.19.219 [152], stays in EL2h for execution when having detected

VHE support during early boot. Our prototype therefore transparently supports running

elevated tasks in EL2t in such a case.

AArch32 Support Quite a few AArch64 processors still allow running AArch32 (32-

bit ARM) applications for compatibility. While there are no technical difficulties to

support an elevated task running in the AArch32 state (i.e., LSU instructions and PAN

are also available on AArch32), we opted not to implement AArch32 support for the

sake of time.
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6.6 Security Analysis

In this section, we analyze the security of InversOS by providing answers to the follow-

ing security questions:

SQ1 Why is InversOS secure (to run instrumented elevated tasks in the privileged

mode and arbitrary legacy tasks in the unprivileged mode)?

SQ2 How well does InversOS mitigate control-flow hijacking attacks on elevated

tasks?

6.6.1 Security by Design

To answer SQ1, we examine all potential ways to compromise InversOS from a legacy

or elevated task:

1. A task may try to read from/write to memory of other tasks to break their confi-

dentiality/integrity.

2. A task may try to read from/write to kernel memory to break the confidentiali-

ty/integrity of the OS kernel.

3. A task may try to allocate an excessive amount of resources (e.g., time, memory)

to break the availability of InversOS.

4. A task may try to execute detrimental instructions that could undermine the se-

curity of InversOS.

5. A task may try to jump to kernel code and use kernel code as a “confused deputy”

for the above goals.

As each task’s memory (sans shared memory) is mapped exclusively to the task’s own

address space, reading and writing other tasks’ memory can only be carried out by ac-

cessing kernel memory or jumping to kernel code. Since kernel memory has AP[1]
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(and APTable[0], if using HPDS) set, accessing kernel memory is disabled via PAN

for elevated tasks and via HPDS or E0PD for legacy tasks. Jumping to kernel code

is also impossible; having UXN set for kernel code prevents legacy tasks from execut-

ing kernel code, while InversOS’s CFI and bit-masking instrumentation ensures that

control-flow transfers in elevated tasks never reach the kernel space. As for attacks on

availability, we argue that InversOS does not introduce new availability problems; run-

ning an elevated task in the privileged mode does not prioritize it on resource allocation

over all other legacy or elevated tasks and the OS kernel. The remaining case is priv-

ileged instructions, the execution of which is restricted by hardware automatically for

legacy tasks and by InversOS’s load-time code scanner for elevated tasks. Conclusively,

InversOS does not introduce new security flaws and is secure by design.

6.6.2 Efficacy against Control-Flow Hijacking

To answer SQ2, we first define and explain a list of invariants that InversOS maintains

for guaranteeing return address integrity of elevated tasks and then reason about why

return address integrity significantly reduces the control-flow hijacking attack surface.

Specifically, InversOS maintains the following invariants for elevated tasks:

Invariant 6.1. A function in an elevated task either pushes its return address in LR to

a shadow stack, or never spills the return address to memory.

Invariant 6.2. If a function in an elevated task pushed its return address to a shadow

stack, its epilogue will always load the return address from the shadow stack location

in which its prologue saved the return address.

Invariant 6.3. An elevated task cannot corrupt shadow stacks by itself or by using a

system call as a “confused deputy” (e.g., calling read(fd, buf, size) where

buf points to shadow stack memory [261]).

Invariant 6.1 is easily upheld by our shadow stack pass, which instruments LR-

saving function prologues to push LR to the shadow stack. With the counterpart in-
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strumentation on epilogue(s) of these functions to pop LR from the shadow stack, our

shadow stack pass guarantees that only a function’s prologue and epilogue(s) can up-

date the shadow stack pointer with a matched decrement/increment, contributing to

Invariant 6.2. Since our forward-edge CFI pass ensures that all indirect calls and tail-

call indirect jumps target the beginning of a function and all non-tail-call indirect jumps

are restricted within their containing function, shadow stack pointer decrements and in-

crements are guaranteed to occur in a matched order, sustaining Invariant 6.2. Finally,

Invariant 6.3 is maintained because the shadow stacks are unprivileged and no exist-

ing/new LSU instructions can be exploited/introduced to corrupt the shadow stacks

(due to CFI/W⊕X), and because of the benign nature of elevated tasks assumed by our

threat model in Section 6.3.

With return address integrity, control-flow hijacking attacks that require corrupting

return addresses (such as return-into-libc [248] and ROP [213, 223]) are effectively

prevented. Furthermore, as non-tail-call indirect jumps cannot break the “jail” of their

containing function, attacks that exploit indirect jumps (such as JOP [35]) no longer

work. The remaining attack surface requires attackers to do purely call-oriented pro-

gramming (i.e., using only corrupted function pointers); while such attacks are possi-

ble [96, 219], they are limited by forward-edge CFI and can be further restrained if

InversOS refines CFI’s granularity. In short, InversOS greatly reduces the control-flow

hijacking attack surface for elevated tasks.

6.7 Performance Evaluation

We evaluated the performance of InversOS on a Station P2 mini-PC which has an

RK3568 quad-core Cortex-A55 processor implementing the ARMv8.2-A architecture

that can run up to 2.0 GHz. The mini-PC comes with 8 GB of LPDDR4 DRAM up

to 1,600 MHz, 64 GB of internal eMMC storage (unused), and 1 TB of SATA SSD. It

runs Ubuntu 20.04 LTS modified by the manufacturer.
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Figure 6.5: InversOS LMBench File Operation Rate (Higher is Better)

We ran all our experiments using two configurations: Baseline and InversOS. In

Baseline, we compiled program and library code using LLVM/Clang v13.0.1 [142]

without the InversOS compiler transformations and ran the generated binary executa-

bles on a Linux v4.19.219 kernel [152] without our kernel modifications. In InversOS,

all program and library code was compiled with the InversOS compiler transformations

(i.e., shadow stack, forward-edge CFI, and bit-masking transformations) and executed

on the same version of the Linux kernel modified with our kernel changes. When run-

ning an InversOS executable, we set an environment variable INVERSOS=1 to inform

the OS kernel that the program should be started as an elevated task, as Section 6.5.1

describes. As the processor lacks E0PD support, we rely on HPDS to prevent legacy

tasks from accessing kernel memory. Both configurations used -O2 optimizations and

performed static linking against the musl libc v1.2.2 [97] and LLVM’s compiler-rt

builtin runtime library v13.0.1 [161]. C++ code in our experiments was compiled with

and statically linked against libc++ [157], libc++abi [158], and libunwind [159] from

LLVM v13.0.1. Libraries for Baseline and InversOS are compiled without and with our

modifications described in Section 6.5.2, respectively.
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Microbenchmark Baseline (µs) stdev (µs) InversOS (×) stdev (×)

null syscall 0.148 0.000 1.047 0.007
read 0.482 0.001 1.054 0.004
write 0.351 0.002 0.991 0.003
stat 4.928 0.023 1.066 0.003
fstat 0.422 0.003 1.052 0.005
open/close 9.744 0.017 0.989 0.003
select 500 fd 24.365 0.017 1.002 0.001
signal install 0.375 0.001 1.059 0.003
signal catch 3.801 0.009 1.493 0.002
protection fault 0.408 0.005 0.980 0.029
pipe 16.115 0.067 0.948 0.004
AF UNIX stream 27.314 0.618 1.051 0.008
AF UNIX connect 99.329 0.733 1.012 0.009
fork+exit 266.767 6.945 1.256 0.012
fork+exec 562.585 7.046 1.188 0.009
fork+shell 2,878.983 12.869 4.007 0.015
page fault 0.910 0.016 1.038 0.009
mmap 1 MB 42.700 3.318 1.019 0.007
udp 76.490 0.214 1.018 0.005
tcp 63.472 0.200 1.011 0.002
connect 102.196 0.503 1.004 0.006
context switch 59.318 0.880 0.993 0.014
fcntl 8.772 1.643 0.992 0.219
semaphore 3.083 0.515 0.954 0.162
usleep 78.661 1.579 0.995 0.020

Geomean — — 1.103 —

Table 6.2: InversOS LMBench Latency (Lower is Better)

6.7.1 Microbenchmarks

To understand the performance impact of the InversOS Linux kernel modifications, we

used LMBench v3.0-alpha9 [172], a microbenchmark suite that measures the latency

and bandwidth of various OS services. For each microbenchmark that supports paral-

lelism, we ran four parallel workloads to reduce variance. We report an average and a

standard deviation of 10 rounds of execution for each microbenchmark.

Tables 6.2 and 6.3 and Figure 6.5 show LMBench performance of both Baseline and

InversOS. Overall, InversOS incurred a geometric mean of 7.0% overhead: 10.3% on

latency, 1.1% on bandwidth, and 2.2% on file operation rate. In most microbenchmarks

the overhead is miniscule. Most notably, fork+shell exhibited a 4× slowdown
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Microbenchmark Baseline (MB/s) stdev (MB/s) InversOS (×) stdev (×)

pipe 1,096.147 72.703 0.991 0.049
AF UNIX stream 931.933 6.753 1.003 0.011
read 1 MB 3,706.665 65.823 0.978 0.013
read 1 MB open2close 3,474.633 45.699 0.990 0.015
mmap 1 MB 10,689.636 36.243 1.006 0.001
mmap 1 MB open2close 6,365.563 43.215 0.972 0.008
tcp 720.056 48.645 0.987 0.013

Geomean — — 0.989 —

Table 6.3: InversOS LMBench Bandwidth (Higher is Better)

because InversOS had to scan every code page of a newly executed shell. The same

goes with fork+exec, in which the executed program is much smaller than the shell

and thus incurred much less overhead (18.8%). In fork+exit, the 25.6% overhead

comes from an optimization of copying code page PTEs upfront; Linux by default only

sets up shared page table mappings of a child process at page faults (i.e., when the

child first accesses the page), which, however, would cause redundant code scanning

in InversOS as InversOS invokes the code scanner whenever a page in an elevated

task is marked executable. We therefore optimized InversOS to avoid redundant code

scanning by copying an elevated task’s code page PTEs during fork() and enabled

this optimization in all InversOS experiments. InversOS incurred 49.3% overhead in

signal catching because of additional flipping of PSTATE.UAO (due to PAN being

disabled) when setting up and tearing down a signal frame; this could be optimized

away by simply disabling UAO support in the Linux kernel, which we opted not to in

order to avoid introducing less relevant changes.

6.7.2 Macrobenchmarks and Applications

To see how InversOS performs on real workloads, we used SPEC CPU 2017

v1.1.9 [232] and Nginx v1.23.3 [244]. SPEC CPU 2017 is a comprehensive bench-

mark suite containing CPU- and memory-intensive programs written in C, C++, and/or

Fortran that stress a computer system’s performance. Nginx is a high performance web
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Benchmark (Rate) Baseline (s) Benchmark (Speed) Baseline (s)

500.perlbench r 135.795 600.perlbench s 135.289
502.gcc r 268.035 602.gcc s 268.294
505.mcf r 431.810 605.mcf s 428.423
520.omnetpp r 354.081 620.omnetpp s 353.981
523.xalancbmk r 242.465 623.xalancbmk s 242.501
525.x264 r 96.540 625.x264 s 96.527
531.deepsjeng r 203.713 631.deepsjeng s 227.060
541.leela r 216.941 641.leela s 217.306
557.xz r 128.610 657.xz s 127.926
508.namd r 157.894
510.parest r 330.373
511.povray r 25.722
519.lbm r 231.428 619.lbm s 1,718.814
526.blender r 533.649
538.imagick r 167.810 638.imagick s 168.136
544.nab r 396.789 644.nab s 397.586

Table 6.4: Baseline SPEC CPU 2017 Execution Time (Lower is Better)

server written in C that has been widely used in the real world.

For SPEC CPU 2017, we evaluated 28 (out of 43) benchmark programs in C/C++ as

LLVM/Clang cannot compile Fortran code. We used the train (instead of the larger

ref) input set because train yielded execution time of at least 20 seconds in each

benchmark already. We report average execution time with 10 rounds of execution for

each benchmark; standard deviations are negligible (less than 1%).

For Nginx, we used Nginx to host randomly generated static files ranging from 1 KB

to 512 MB with one worker process listening to port 8080 for HTTP requests. We then

ran ApacheBench (ab) [13] on the same machine to measure Nginx’s bandwidth of

transferring files within a period of 10 seconds. We report an average and a standard

deviation over 10 rounds of execution for each file size.

Table 6.4 and Figure 6.6 present the Baseline performance of SPEC CPU 2017 and

Nginx, respectively. Figures 6.7 and 6.8 show the performance overhead InversOS in-

curred on SPEC CPU 2017 and Nginx, respectively. Overall, InversOS increased the

execution time of SPEC CPU 2017 by a geometric mean of 7.1% and degraded the

bandwidth of Nginx by a geometric mean of 3.0%. We studied the overhead on SPEC
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CPU 2017 and discovered that our software-based forward-edge CFI caused most of

the overhead; with that disabled, the overhead decreased to a geometric mean of 1.9%

(in particular, xalancbmk’s overhead dropped down from more than 40% to less than

3%). This indicates that InversOS’s shadow stack and bit-masking transformations

and kernel modifications have minimal performance impact on SPEC CPU 2017, com-

pared with software-based forward-edge CFI. Incorporating BTI [22], we expect Inver-

sOS’s performance overhead to be greatly reduced; with BTI, no explicit CFI checks

(as shown in Figure 6.4) are needed. However, as BTI does not provide protected

shadow stacks by itself, (post-)ARMv8.5-A systems can still leverage InversOS’s Priv-

ilege Inversion to protect the integrity of shadow stacks. Nginx saw significant variance

especially on file sizes≤ 128 KB. We suspect that the cause of high variance is caching

and file system behaviors.

6.8 Related Work

6.8.1 Control-Flow Integrity

Since the introduction of the original CFI work [1, 2], a long line of research has been

proposed to improve its precision, performance, and/or applicability [9, 34, 36, 41–
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Figure 6.8: InversOS Nginx Bandwidth (Normalized, Higher is Better)

43, 47, 54, 57, 68, 77–79, 81, 88, 90, 94, 104, 105, 112, 115, 121, 122, 124, 126,

128, 130, 132, 133, 146, 148, 149, 155, 170, 179, 185–187, 191, 197, 202, 203, 225,

247, 250, 251, 255, 256, 258, 262, 270, 273, 274, 276–279, 282, 284]. As InversOS

leverages label-based CFI for forward edges and protected shadow stacks for backward

edges, we compare InversOS with various types of CFI schemes.

Stateless CFI The original CFI [1, 2] restricts forward-edge indirect control-flow

targets via a coarse-grained context-insensitive analysis, which statically assigns a dis-

tinct label to allowed targets (an equivalence class or EC) of each indirect call or jump

and inserts checks for a matched label at indirect call and jump sites. Subsequent

research on stateless forward-edge CFI makes trade-offs between granularity and per-

formance [34, 185–187, 202, 247, 251, 256, 277–279], strengthens other security poli-

cies [47, 94, 179, 276], or applies to new platforms [9, 36, 42, 68, 79, 90, 104, 126, 128,

130, 191, 203, 255, 262, 282]. Hardware support for stateless forward-edge CFI (such

as HAFIX [81], HCFI [57], Intel CET [225], and ARM BTI [22]) has been proposed,

which further lowers the performance overhead but only provides coarse-grained pro-

tection similar to the original CFI. InversOS’s forward-edge CFI, while currently pro-

totyped with two labels, can seamlessly adopt any of the above available finer-grained

schemes for better security. It can also utilize BTI on newer processors for better per-
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formance.

Stateful CFI Due to imprecision of context-insensitive CFI, researchers have focused

on context-sensitive CFI policies that take previous execution history into account.

Using a runtime monitor (inlined or as a separate process), these systems track exe-

cuted branches [54, 115, 197, 270, 274], paths [88, 121, 250], call-sites [132, 133],

code pointer origins [133], or complete control flows [105, 155] to reduce the size

of ECs. However, such dynamic CFI schemes require hardware features only found

on x86 processors, such as Branch Trace Store (BTS) [270], Last Branch Record

(LBR) [54, 197, 250, 274], Performance Monitoring Unit (PMU) [274], Proces-

sor Trace (PT) [88, 105, 115, 121, 155], Transactional Synchronization Extensions

(TSX) [132, 133], and MPX [133], limiting their applicability on AArch64. Compared

with stateful CFI, InversOS offers a weaker protection on forward edges but provides

the strongest security on backward edges with better performance and less resource

consumption.

Shadow Stacks The original CFI [1, 2] uses shadow stacks for backward-edge pro-

tection; their debut dates back to RAD [55] and StackGhost [98], which all used the

compact shadow stack design. Dang et al. [77] proposed the parallel shadow stack

design, improving the performance but wasting more memory. As described in Sec-

tion 6.2, in order to guarantee return address integrity, shadow stacks need a protec-

tion mechanism that forbids unauthorized tampering. A few systems [77, 78] simply

leave shadow stacks unprotected, while some rely on system calls [55, 98, 255] or

SFI [63, 282] for protection but incur prohibitive overhead. More commonly used is

information hiding (i.e., ASLR [201]), which places shadow stacks at a random loca-

tion in the address space to increase the difficulty for attackers to locate the shadow

stacks [43, 202, 228, 284]. Though achieving the best performance among software-

only solutions, information hiding provides the weakest guarantee and is vulnerable to
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information disclosure attacks [33, 95, 101, 110, 192, 230, 241]. Hardware-assisted

shadow stack protection significantly lowers the performance cost and can be fulfilled

differently on different ISAs. On x86 32, segmentation [1, 2] provides the most effi-

cient implementation. CET [225] offers native support for protected shadow stacks on

x86 64 but is only available on most recent processors [4, 123]; a few solutions repur-

posed MPX [43, 122, 128] or MPK [43, 112] for non-CET-equipped Intel processors

but reported vastly different overhead numbers. HCFI [57] implements an in-chip non-

memory-mapped shadow stack on SPARC via a custom ISA extension. In the micro-

controller world, Silhouette [282] (as we presented in Chapter 3) and Kage [90] trans-

form regular store instructions into LSU stores on ARMv7-M [21], while CaRE [191]

and TZmCFI [130] leverage TrustZone-M on ARMv8-M [23]. To the best of our

knowledge, InversOS is the first to provide hardware-assisted protected shadow stacks

on AArch64; our Privilege Inversion technique is inspired by Silhouette-Invert [282]

(as described in Section 3.4.6).

Cryptographic CFI Mashtizadeh et al. [170] created Cryptographic CFI (CCFI),

which uses message authentication codes (MACs) to sign and verify code pointers

and leverages x86’s AES-NI instructions to accelerate MAC calculation. ARMv8.3-

A’s PAuth [22] adds hardware support for pointer authentication codes (PACs) and

places PACs in unused upper bits of pointers. Qualcomm has adopted PAuth to en-

force CFI [208]. However, CCFI and plain PAuth suffer from pointer reuse attacks, in

which attackers use buffer overread vulnerabilities [241] to harvest signed pointers for

later reuse. Utilizing PAuth, PARTS [148] signs code pointers with type IDs; this limits

reuse of signed return addresses within the same functions and signed function pointers

within the same types. PACStack [149] and PACtight [124] are also based on PAuth;

both solutions sign a return address with the PAC of the previous return address, cre-

ating an authenticated stack. PACtight further signs a function pointer with its address

and a random tag. Studies on type-ID-based PACs [258] and authenticated chain of
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return addresses [146] have also been explored on RISC-V as custom ISA extensions.

PAL [273] uses PAuth to provide CFI for OS kernels.

As PACStack [149] and PACtight [124] share the most similar threat model, as-

sumptions, and security guarantees with InversOS, we compare InversOS with them in

more detail. PACStack claims that its authenticated stack “achieves security compa-

rable to hardware-assisted shadow stacks without requiring dedicated hardware”; we

show that InversOS achieves hardware-assisted shadow stacks with even less hardware

requirements (ARMv8.1-A’s PAN and HPDS vs. ARMv8.3-A’s PAuth). Furthermore,

PACStack requires forward-edge CFI but reported performance numbers without ac-

counting its overhead. For an apples-to-apples comparison, InversOS without forward-

edge CFI outperforms PACStack (1.9% vs. ≈3.0% on SPEC CPU 2017 and ≤3.0%

vs. 6–13% on Nginx). PACtight enforces finer-grained forward-edge CFI than Inver-

sOS and its performance (4.0% on Nginx) is roughly on par with InversOS. However,

PACtight maintains an in-memory metadata storage for the random tags at runtime and

relies on ASLR [201] to hide its location. Essentially, PAC-based systems only offer

probabilistic security even if the entropy they provide is large. In contrast, InversOS’s

shadow stacks are integrity-enforced, providing the strongest guarantees.

Other Approaches Kuznetsov et al. [140] developed code-pointer integrity (CPI),

an approach to ensuring memory safety of all code pointers and data related to code

pointers. CPI identifies such data via static analysis and instrumentation and places the

data in isolated safe regions. Again, segmentation [4, 123] and ASLR [201] were used

to protect the safe regions on x86 32 and x86 64, respectively. PACtight-CPI [124]

implements CPI using PAuth, incurring 4.07% performance overhead on average. In-

versOS’s Privilege Inversion provides an alternative option to protect CPI’s safe regions

with potentially less overhead. µRAI [9] enforces return address integrity on microcon-

trollers by encoding return addresses in a reserved register and ensuring that the register

value is never corrupted; it relies on system calls to spill the register value to protected



139

memory when needing to fold a call chain longer than what a single register can hold.

While µRAI is in theory applicable to general-purpose systems like x86 and AArch64,

we believe such an approach provides poor scalability and may incur high performance

overhead due to more nested function calls than on microcontrollers.

6.8.2 Intra-Address Space Isolation

InversOS uses Privilege Inversion for efficient intra-address space isolation. We

omit discussing custom hardware modifications that compartmentalize software (e.g.,

CODOMs [252] and Mondrian [267, 268]) and limit our discussion on related work

utilizing recent commodity hardware. Approaches used to enforce CFI are also not

repeated here.

SFI [171, 254] instruments program loads and stores to prevent them from accessing

certain memory regions and has been used to sandbox untrusted code [139, 221, 272].

While some systems [89, 136] accelerate SFI checks using MPX on x86, the overhead

of SFI is still considered high (on both performance [261] and memory usage [43])

and grows as the number of isolated regions increases. Furthermore, SFI often requires

CFI to ensure that SFI checks are not bypassed by attacker-manipulated control flow.

Another address-based isolation technique is hardware-enforced address range mon-

itoring. PicoXOM [227] (as described in Chapter 4) enforces execute-only memory

(XOM) by configuring ARM debug registers to watch over a code segment against

read accesses. Such approaches are limited by hardware resources available and cannot

scale up.

Recent defenses enforce domain-based isolation; memory regions are associated

with a protection domain, and different mechanisms are used to allow or disallow ac-

cesses to the protection domain at runtime. On x86, researchers have explored domain-

based memory access control using hardware features such as Virtual Machine Ex-

tensions (VMX) [114, 117, 136, 154, 173, 182, 207, 261], MPK [113, 114, 117, 198,
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217, 218, 243, 249, 253, 257], SMAP [261], and CET [271]. ARMlock [283] and

Shreds [51] use ARM domains, which are only available on AArch32 [22]. Previous

work has also used LSU instructions for isolation. ILDI [56] utilizes LSU instructions

and PAN to protect a safe region inside the OS kernel; it relies on a more privileged hy-

pervisor to moderate sensitive kernel operations. uXOM [141] transforms regular load-

s/stores to LSU instructions to enforce XOM on microcontrollers, where application

code typically executes in the privileged mode already. InversOS, employing Privilege

Inversion, is the first to extend domain-based isolation to AArch64 user space.

We notice that Privbox [139] and SEIMI [261], like InversOS, also proposed execut-

ing user-space code in the privileged mode (x86’s ring 0). Privbox does so to accelerate

system call invocation and uses SFI to safely run elevated code. The overhead of its

heavy instrumentation, however, may outweigh its speedup from faster system calls on

certain programs. InversOS can benefit from the idea of system call acceleration for

elevated tasks, which we leave as future work. SEIMI flips SMAP (x86 equivalence

to PAN) to create a safe region for trusted user-space code; its OS kernel is then ele-

vated to run in ring -1 via VMX. Compared with SEIMI, InversOS’s Privilege Inversion

provides instruction-level isolation and requires no frequent domain switching.
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Chapter 7

Conclusions and Future Work

This dissertation presented our work on enforcing low-cost security policies for ARM-

based systems, whether they are based on tiny resource-constrained microcontrollers

or powerful general-purpose application processors, and made four major contributions

elaborated in each of Chapters 3–6, respectively. For each of the chapters, we conclude

our work and discuss potential directions for future research as follows.

Efficient Protected Shadow Stacks for Embedded Systems We presented Silhou-

ette: a software control-flow hijacking defense that guarantees the integrity of return ad-

dresses for embedded systems. To minimize overhead, we proposed Silhouette-Invert, a

system which provides the same protections as Silhouette with significantly lower over-

head at the cost of a minor hardware change. We implemented our prototypes for an

ARMv7-M development board. Our evaluation showed that Silhouette incurs low per-

formance overhead: a geometric mean of 1.3% and 3.4% on two benchmark suites, and

Silhouette-Invert reduces the overhead to 0.3% and 1.9%. Silhouette is open-sourced

at https://github.com/URSec/Silhouette.

We see two primary directions for future work. First, we can optimize Silhouette’s

performance. For example, currently Silhouette transforms all non-atomic stores into

unprivileged stores and instruments atomic stores with SFI. As Silhouette ensures that

the stack pointer stays within the stack region, store instructions using the sp register

https://github.com/URSec/Silhouette


142

and an immediate to compute target addresses are unexploitable. Consequently, Silhou-

ette could elide store hardening and SFI on such stores. Second, we can use Silhouette

to protect other memory structures, such as the safe region used in CPI [140] and the

process state saved on interrupts and context switches (like previous work [68] does).

Fast Execute-Only Memory for Embedded Systems We presented PicoXOM: a

fast and novel XOM system for ARMv7-M and ARMv8-M devices which leverages

ARM’s MPU and DWT unit. PicoXOM incurs an average performance overhead of

0.33% and an average code size overhead of 5.89% on the BEEBS and CoreMark-

Pro benchmark suites and five real-world applications. A prototype of PicoXOM on

ARMv7-M is open-sourced at https://github.com/URSec/PicoXOM.

In future work, we can explore how to leverage debug support like DWT to en-

force other security policies with low overhead. In particular, hardware debug facilities

on RISC-V [211] include a watchpoint trigger system similar to but more powerful

than ARM’s DWT [21, 23]; it supports any number of watchpoint triggers to be linked

together to perform chained conjunctive matching of addresses, address ranges, instruc-

tion opcodes, and data values, and it supports a versatile collection of conditions under

which a trigger fires (traps the execution) including inverse matching, less-than match-

ing, and greater-than-or-equal-to matching. Utilizing RISC-V watchpoint triggers, we

can implement more complicated access control mechanisms with performance over-

head as negligible as PicoXOM.

Leakage-Resistant Randomization for Microcontrollers We presented Ran-

dezvous: a diversification-based control-flow hijacking defense enhanced with novel

techniques that mitigate control data leakage and strengthen the low entropy on MCUs.

We demonstrated Randezvous’s efficacy and showed that Randezvous incurs low over-

head on our benchmarks and applications. Randezvous is open-sourced at https:

//github.com/URSec/Randezvous.

https://github.com/URSec/PicoXOM
https://github.com/URSec/Randezvous
https://github.com/URSec/Randezvous
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In future work, we can explore randomization schemes that avoid code layouts with

bad cache performance by leveraging theory on code locality [144]. We can also inves-

tigate whether an attacker can infer which control data (slot) is real by examining which

control data mutates over time. Such attacks may be possible but require multiple buffer

overreads [241] in multiple functions to be practical.

Efficient Control-Flow Protection for AArch64 Applications We presented Inver-

sOS, a hardware-assisted protected shadow stack implementation for AArch64, which

utilizes common hardware features to create novel and efficient intra-address space iso-

lation and safely executes user-space code in the privileged mode via OS kernel and

compiler restraints. InversOS is backward-compatible with existing application bina-

ries by a novel use of another AArch64 feature. Our analysis shows that InversOS is

secure and effective in mitigating attacks, and our performance evaluation demonstrates

the low costs of InversOS on real-world benchmarks and applications. Our prototype

of InversOS is open-sourced at https://github.com/URSec/InversOS.

We see several directions for future work. First, we can explore system call op-

timizations (such as Privbox [139]) for elevated tasks; these tasks already run in the

privileged mode and can accelerate system call invocation by avoiding the costly SVC

instructions. Second, we can leverage Privilege Inversion to enforce other security

policies such as CPI [140] and full memory safety [86, 180, 181, 281], reducing their

overheads significantly. Finally, we intend to investigate potential performance im-

provements to InversOS by using more recent ISA features (e.g., BTI and E0PD) [22]

on real hardware.

https://github.com/URSec/InversOS
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